SEISMIC EVALUATION OF BUILDING FRAMES USING HIGH-PERFORMANCE STEEL

Muslinang Moestopo

The Japan Iron and Steel Federation

JOINT RESEARCH PROJECT:

e Japan Iron and Steel Federation

The Japan Iron and Steel Federation

Society of Steel Construction

AGENDA:

1. Introduction :

Need for reliable seismic resistant structures

2. Design of Steel Building Frames

Using High-performance Steel

3. Seismic Performance of Steel Building Frames

- 4. Discussion
- 5. Conclusion

1. INTRODUCTION

- The need for reliable seismic resistant structures is indispensable for earthquake prone area such as Indonesia.
- The need for a higher performance steel material is essential to secure the performance of seismic resistant structure.
- The Indonesian seismic resistant building codes have been updated including the seismic provisions for structural steel buildings.
- To evaluate the seismic performance of structural steel building design using the SN490B steel as compared to the SS400 steel (Push-over analysis)

2. DESIGN OF STEEL BUILDING FRAMES

Four-story Office Building 5 X 8.00 M in each direction

Location : Bandung, Indonesia Soft-soil

Material : **SS400** and **SN490B**

STEEL MATERIAL

	SS400	SN490B
Yield stress, Fy, MPa	235	325
Tensile stress, Fu, MPa	400	490
Ry	1.5	1.338

FRAMES

Special Moment Frames :

On Building Perimeter

Gravity Frames :

On Building Interior

Building Irregularity :

None (Vertical and Horizontal)

BUILDING STANDARDS

Seismic Loading Other Loadings	SNI 1726 : 2019 SNI 1727 : 2013	ASCE 7-16 ASCE 7-10
Structural Steel Building	SNI 1729 : 2015	AISC 360-2010
Seismic Provision for Structural Steel Building	SNI 7860 : 2015	AISC 341-2010

SEISMIC DESIGN PARAMETER

Risk Category	II.
Importance Factor, le	1.0
SDs SD1	0.6987 g 0.6415 g
Seismic Design Category, SDC	D
Response Modification Coefficient, R	8
Overstrength Factor, Ω_{0}	3
Deflection Amplification Factor, Cd	5.5
Redundancy Factor, p	1.0
Drift Limit	2.5 %

STRUCTURAL DESIGN :

- Frames
- Demand-Capacity Ratio (Beam Column)
- Interstory Drift
- Structural Weight

SS400 Frame

SN490B Frame

Story4

Story3

Story2

Story1

Base

D/C RATIO

SPECIAL MOMENT FRAMES

D/C <<< 1.0

Ductility demandDrift limit

Story	Element	SS400		SN490B	
4F	Column	WF594x302	0.345	WF600x200	0.439
	Beam	WF450x200	0.552	WF450x200	0.426
3F	Column	WF594x302	0.400	WF594x302	0.417
	Column	WF800x300	0.393	WF606x201	0.439
	Beam	WF500x200	0.654	WF500x200	0.527
	Beam	WF606x201	0.695	WF600x200	0.588
2F	Column	WF800x300	0.601	WF594x302	0.531
	Beam	WF600x200	0.655	WF500x200	0.605
	Beam	WF606x201	0.735	WF600x200	0.646
1F	Column	WF800x300	0.712	WF700x300	0.607
	Column	WF912x302	0.722	WF912x302	0.574
	Beam	WF600x200	0.598	WF600x200	0.516
	Beam	WF594x302	0.522		

D/C RATIO

GRAVITY FRAMES

D/C ⇒ 1.0

Story	Element	SS400		SN490B	
4F	Column	WF500x200	0.197	WF500x200	0.152
	Beam	WF400x200	0.788	WF350x175	0.878
	Beam	WF450x200	0.843	WF400x200	0.776
3F	Column	WF588x300	0.293	WF600x200	0.394
	Beam	WF400x200	0.954	WF400x200	0.801
	Beam	WF450x200	0.865	WF450x200	0.846
	Beam	WF500x200	0.910	WF500x200	0.888
	Beam	WF600x200	0.902		
2F	Column	WF588x300	0.509	WF588x300	0.399
	Beam	WF400x200	0.954	WF400x200	0.801
	Beam	WF450x200	0.865	WF450x200	0.846
	Beam	WF500x200	0.910	WF500x200	0.888
	Beam	WF600x200	0.902		
1F	Column	WF700x300	0.811	WF588x300	0.686
	Beam	WF400x200	0.954	WF400x200	0.819
	Beam	WF450x200	0.882	WF450x200	0.846
	Beam	WF500x200	0.910	WF500x200	0.888
	Beam	WF600x200	0.902		

INTERSTORY DRIFT

ELEMENT	WEIGHT (KG)				
	SS400	SN490			
Column	95,726	82,061			
Beam	171,962	149,747			
Sub-Beam	57,251	51,491			
Total	324,939	283,299			
Difference		41,639			
Reduction		12.81 %			

3. SEISMIC PERFORMANCE

ASCE 41-17 : Seismic Evaluation and Retrofit of Existing Buildings

Plastic Hinge Model

Acceptance Criteria

Table 9-7.1. Modeling Parameters and Acceptance Criteria for Nonlinear Procedures—Structural Steel Beams and Columns—Flexural Actions

Modeling Parameters	Acceptance Criteria				
		Plastic rotation angle (radians) Performance Level			
Plastic rotation angle a and b (radians) Residual strength ratio c		ю	LS	СР	
Beams 1. Where: $\frac{b_f}{2t_f} \le 0.30 \sqrt{\frac{E}{F_{ye}}}$ and $\frac{h}{t_w} \le 2.45 \sqrt{\frac{E}{F_{ye}}}$	$a = 9\theta_y$ $b = 11\theta_y$ c = 0.6	0.25 ^a	а	b	
2. Where: $\frac{b_f}{2t_f} \ge 0.38 \sqrt{\frac{E}{F_{ye}}}$ or $\frac{h}{t_w} \ge 3.76 \sqrt{\frac{E}{F_{ye}}}$	$a = 4\theta_y$ $b = 6\theta_y$ c = 0.2	0.25 ^a	0.75 ^a	а	

3. Other: Linear interpolation between the values on lines 1 and 2 for both flange slenderness (first term) and web slenderness (second term) shall be performed, and the lower resulting value shall be used.

ASCE 41-17 : Seismic Evaluation and Retrofit of Existing Buildings

Modeling Parameters	A	Acceptance Criteria			
	Plastic rotation angle (radians) Performance Level				
Plastic rotation angle a and b (radians) Residual strength ratio c	ю	LS	СР		
Columns in Compression ^{a,b}					
1. Where: $\frac{b_f}{2t_f} \le 0.30 \sqrt{\frac{E}{F_{ye}}}$ and For $\frac{P_G}{P_{ye}} < 0.2 \frac{h}{t_w} \le 2.45 \sqrt{\frac{E}{F_{ye}}} \left(1 - 0.71 \frac{P_G}{P_{ye}}\right)$ For $\frac{P_G}{P_{ye}} \ge 0.2 \frac{h}{t_w} \le 0.77 \sqrt{\frac{E}{F_{ye}}} \left(2.93 - \frac{P_G}{P_{ye}}\right) \le 1.49 \sqrt{\frac{E}{F_{ye}}}$ $a = 0.8 \left(1 - \frac{P_G}{P_{ye}}\right)^{2.2} \left(0.1 \frac{L}{r_y} + 0.8 \frac{h}{t_w}\right)^{-1} - 0.0035 \ge 0$ $b = 7.4 \left(1 - \frac{P_G}{P_{ye}}\right)^{2.3} \left(0.5 \frac{L}{r_y} + 2.9 \frac{h}{t_w}\right)^{-1} - 0.006 \ge 0$	0.5 ^a	0.75 ^b	Ь		
$c = 0.9 - 0.9 \frac{P_{G}}{P_{ye}}$					

ASCE 41-17 : Seismic Evaluation and Retrofit of Existing Buildings

Modeling Parameters	Acceptance Criteria			
	Plastic rotation angle (radians) Performance Level			
Plastic rotation angle a and b (radians) Residual strength ratio c	ю	LS	СР	
2. Where $\frac{b_f}{2t_f} \ge 0.38$ $\int \frac{E}{F_{ye}}$ or	0.5 ^a	0.75 ^b	b	
For $\frac{P_G}{P_{ye}} < 0.2 \frac{h}{t_w} \ge 3.76 \sqrt{\frac{E}{F_{ye}}} \left(1 - 1.83 \frac{P_G}{P_{ye}}\right)$				
For $\frac{P_G}{P_{ye}} \ge 0.2 \frac{h}{t_w} \ge 1.12 \sqrt{\frac{E}{F_{ye}}} \left(2.33 - \frac{P_G}{P_{ye}} \right) \ge 1.49 \sqrt{\frac{E}{F_{ye}}} = 1.2 \left(1 - \frac{P_G}{P_{ye}} \right)^{1.2} \left(1 - \frac{L}{P_{ge}} + 0.1 \frac{h}{P_{ge}} + 0.9 \frac{b}{P_{ge}} \right)^{-1} = 0.0023 \ge 0$				
$b = 2.5 \left(1 - \frac{P_G}{P_{ye}}\right)^{1.8} \left(0.1 \frac{L}{r} + 0.2 \frac{h}{t} + 2.7 \frac{b}{2t_f}\right)^{-1} - 0.0027 \ge 0$				
$c = 0.5 - 0.5 \frac{P_G}{P_{ye}}$				

3. Other: Linear interpolation between the values on lines 1 and 2 for both flange slenderness (first term) and web slenderness (second term) shall be performed, and the lower resulting value shall be used.

ASCE 41-17 : Seismic Evaluation and Retrofit of Existing Buildings

PUSH OVER

SN 490B:

- Less stiffness
- Higher ultimate strength
- More ductile

-SS400 -SN490B * Performance Point Performance Point

PUSH OVER

-SS400 -SN490B × Performance Point × Performance Point

SN 490B:

- Less stiffness
- Higher ultimate strength
- More ductile

3. DISCUSSION

- Plastic hinge formation
- Energy Dissipation
- Seismic Performance
- Others

DISSIPATED ENERGY

STRUCTURAL PERFORMANCE

	Pushover Direction (kN)	First	Performance Point		D			
Structure		Yield (kN)	Displacement (mm)	Base Shear (kN)	Immediate Occupancy	Life Safety	Collapse Prevention	Building Performance
SS400		8,951	278.04	11,053	242.07	363.11	484.15	Life safety
SN490B	X	8,916	311.02	10,749	348.19	522.28	696.37	Immediate Occupancy

STRUCTURAL PERFORMANCE

		First	Performan	ce Point	Deformation			
Structure	Pushover Direction	Yield (kN)	Displacement (mm)	Base Shear (kN)	Immediate Occupancy	Life Safety	Collapse Prevention	Building Performance
SS400		8,951	278.04	11,053	242.07	363.11	484.15	Life safety
SN490B	X	8,916	311.02	10,749	348.19	522.28	696.37	Immediate Occupancy
SS400		11,168	260.04	12,507	272.45	408.68	544.91	Immediate Occupancy
SN490B	Y	10,512	274.90	12,032	330.22	495.34	660.45	Immediate Occupancy

More advantages of using SN490B :

- (1) limitation of upper yield stress to ensure the final collapse mechanism of frames as it assumed at design stage;
- (2) restrict yield ratio (yield stress to tensile strength) to 0.80 or lower, to provide better over-strength capacity;
- (3) limitation of fracture toughness index higher than 27 Joule at 0°C to provide better weldability for better performance of connection;
- (4) limits the carbon, phosphorus, sulphur, and specified weld cracking sensitivity composition, to secure the weldability, workability and resistance to through-thickness cracking.

5. CONCLUSION

1. The design of two identical buildings of Special Moment Frames according to the recent Indonesia Seismic Building Codes (using SS400 steel and SN490B steel) shows the advantage of the SN frame in steel weight due to its **higher yield stress** and **lower Ry**.

This advantage could be **more apparent** when the design of building structure is governed by the strength limit, not by the drift limit.

- 2. The result of the non-linear static push over analysis of both design frames shows that the SN frame exhibits:
 - (1) less structural stiffness;
 - (2) higher structural strength;
 - (3) more ductile structure;
 - (4) better structural performance;
 - (5) higher energy dissipation capacity;
 - (6) better plastic hinge formation

that prevents a sudden collapse due to column failure.

3. From the viewpoint of risk assessment for building due to earthquake occurrence, the use of SN490B steel with a smaller variation of Yield Point ensures the structure will perform much closer to the design performance that was determined for the building. This indeed will increase the performance of the building in protecting the human live and social assets. - Thank You For your kind attention