

16 November 2022

Globally, our NDCs up to 2030 are inadequate to stay on a 1.5°C pathway

Projected global emissions in 2030 based on NDCs (min-max)		
	50-57	47-55
Gap between NDCs and 2°C pathway (min-max)	10-16	6-14

Gap between NDCs and 1.5°C pathway (min-max)	19-26	16-23

Note: NDCs as announced prior to COP 26

Source: IPCC (2022), Summary for policymakers: Climate change 2022: Mitigation of climate change Malaysia's NDC by 2030 will not decrease net emission and commit to peak emissions

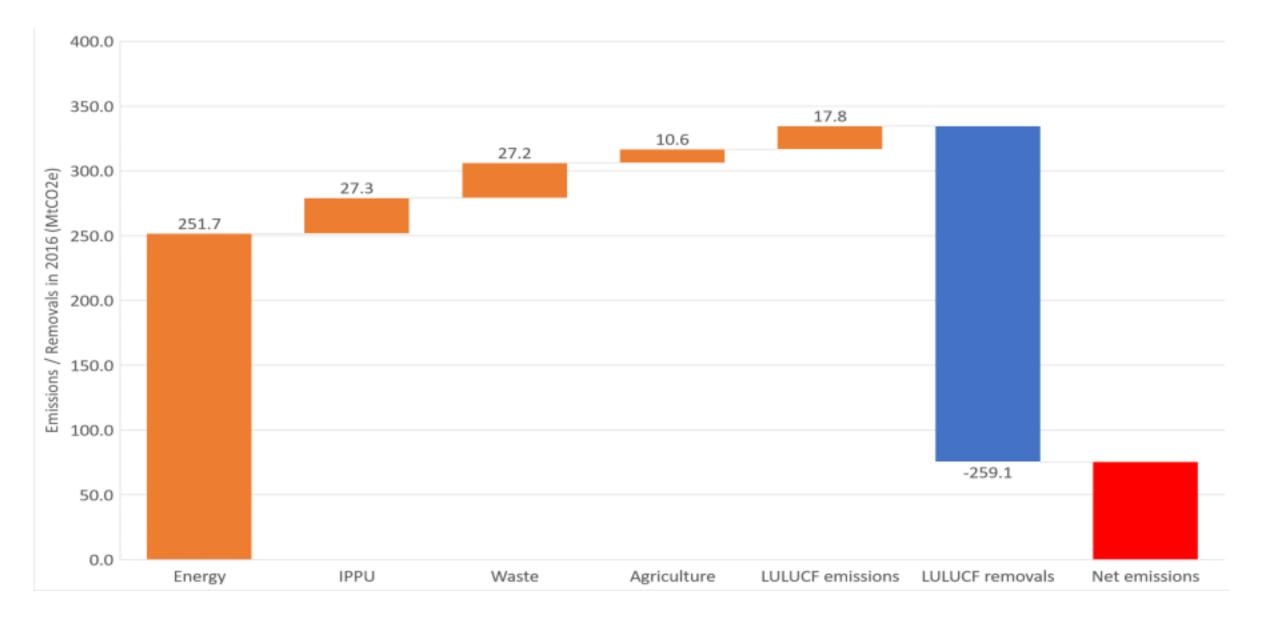
GDP at 2010 prices	MYR bil	659.6	1,677.5	1017.9	154.3%

Carbon intensity	kg CO ₂ e/MYR	0.427	0.235	-0.168	-45.0%*
Gross GHG emissions	bil kg CO ₂ e	281.8	394.2	112.4	39.9%

* Malaysia's NDC target is to reduce carbon intensity by 45% by 2030 from a 2005 base

	р50 (р5–р95) *		GHG emissions (GtCO ₂ -eq yr ⁻¹) ^g		GHG emissions reductions from 2019 (%)*		Emissions milestones U					
Category ^{a.c} [# pathways	Category/subset label	WGI SSP & WGIII IPs/IMPs alignment ^{s,1}	2030	2040	2050	2030	2040	2050	Peak CO ₂ emissions (% peak before 2100)	Peak GHG emissions (% peak before 2100)	Net zero CO ₂ (% net zero pathways)	Net zero GHGs (% net zero pathways) ^{s.1}
Modelled global emissions pathways categorised Projected memissions in projected memissions in projected memissions in projected memissions in scenarios, we may be a scenarios, we measure the illustrative scenarios (SSPx-yy) considered by Projected memissions in projected memissions in projected memissions in projected memissions in scenarios, we may be a scenarios, we may be a scenarios (SSPx-yy) considered by Projected memissions in projected memissions in scenarios, we may be a scenarios, we may be a scenarios (SSPx-yy) considered by		HG emission	cross the -95th	Projected median GHG emissions reductions of pathways in the year across the scenarios compared to modelled 2019, with the 5th–95th percentile in brackets. Negative numbers indicate increase in emissions compared to 2019.		Median 5-year intervals at which projected CO ₂ & GHG emissions peak, with the 5th–95th percentile interval in square brackets. Percentage of peaking pathways is denoted in round brackets. Three dots () denotes emissions peak in 2100 or beyond for that percentile.		which projecter emissions of p this category re with the 5th-9 interval in squa Percentage of r pathways is de brackets. Three dots () net zero not re	Median 5-year intervals at which projected CO ₂ & GHG emissions of pathways in this category reach net zero, with the 5th–95th percentile interval in square brackets. Percentage of net zero pathways is denoted in round			
C1 [97]	limit warming to 1.5°C (>50%) with no or limited overshoot	SSP1-1.9, SP	31 [21–36] 33	17 [6–23] 18	9 [1–15] 8	43 [34-60] 41	69 [58–90] 66	84 [73–98] 85	2020-202	15 (100%)	2050-2055	2095–2100 (52%) [2050–] 2070–2075
C1a [50] C1b [47]	GHGs without net zero GHGs	LD Ren	29 [21–36]	[6-24] 16 [7-21]	0–15] 9 [4–13]	(31-59) 48 (35-61)	(58-89) 70 [62-87]	[72–100] 84 [76–93]	[2020-	-2025]	(100%) [2035–2070]	(100%) [2050–2090] – [0%] [–]

policymakers: Climate change 2022: Mitigation of climate change


We need more countries to commit to net zero by or before 2050

Before 2050	Finland (2035) Austria (20	940) Iceland (2040)	
	Germany (2045)	Sweden (2045)	
By 2050	Argentina	Australia	Brazil
	Canada	Japan	South Africa
	South Korea	United Kingdom	United States
	European Union		
	Cambodia	Vietnam	Singapore
After 2050	Indonesia (2060)	China (2060)	India (2070)
	Russia (2060)	Saudi Arabia (2060)	Turkey (2053)

	Thailand (2065)		
Ambiguous	Malaysia (≥2050)		
Yet to announce	Mexico	Philippines	

Source: Climate change intelligence unit, Al Jazzera, Authors' analysis

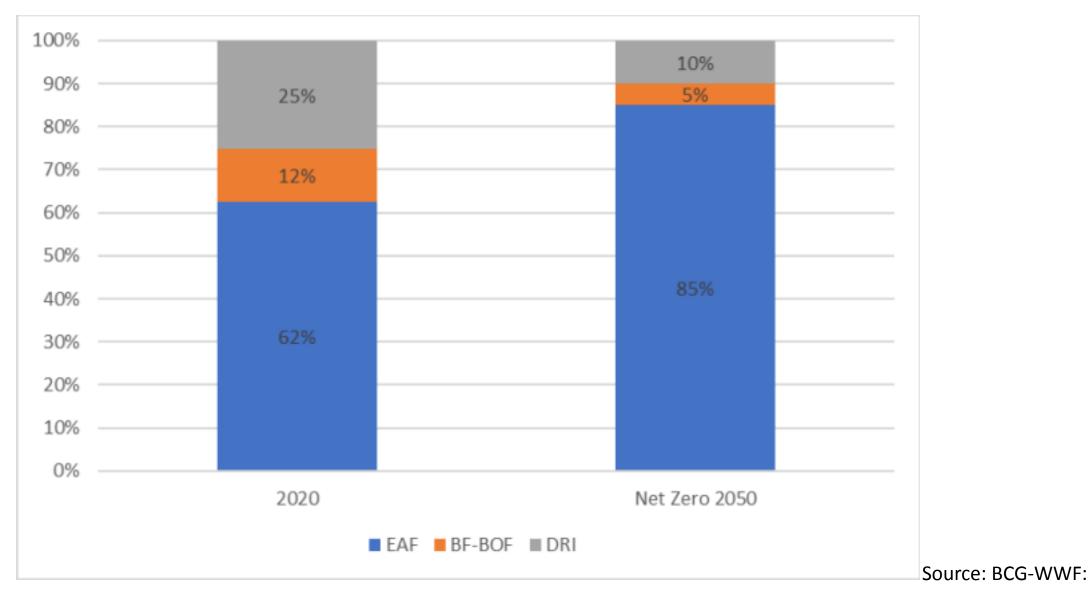

Malaysia's GHG inventory in 2016

75.5Note: IPPU: Industrial process and product use; LULUCF: Land use, land use change and forestry

Source: Third Biennial Report

BCG-WWF's net zero by 2050 is largely driven by reduced energy emissions

Source: BCG-WWF: Net zero pathways for Malaysia (2021), Authors' analysis

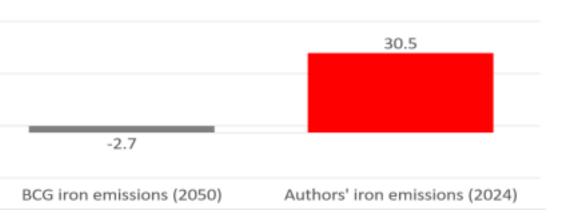

BCG-WWF's levers to achieve net zero by 2050 are commercially viable (NPV>0)

Waste (-6.1 MtCO2e)	Increase biogas plants, increase recycling, reduce food waste, increase waste to energy plan
AFOLU –	Reduce fertilizer usage through increased precision and control, employ alternate wetting
Agriculture (-2.0	and drying techniques in rice plantations, improve feed to cattle to reduce enteric
MtCO2e)	fermentation

• BCG-WWF is of the view that without CCUS, existing commercially viable technology options bring Malaysia very close to net zero by 2050. With CCUS, for sure Malaysia can achieve net zero by 2050. However, improvements in other technologies may exempt the need for CCUS

Source: BCG-WWF: Net zero pathways for Malaysia (2021), Authors' analysis

BCG-WWF forecast Malaysia's EAF share of capacity to increase to 85%


Net zero pathways for Malaysia (2021)

nare of EAF to reach 85% by 2050 may not be realistic

REP: Reference production scenario SAP: Structure adjustment production scenario Source: Zhang, A Bottom-up Energy Efficiency Improvement Roadmap for China's Iron and Steel Industry up to 2050 (2016)

• Scrap metal will be limited in availability in developing countries (Battle, 2014)

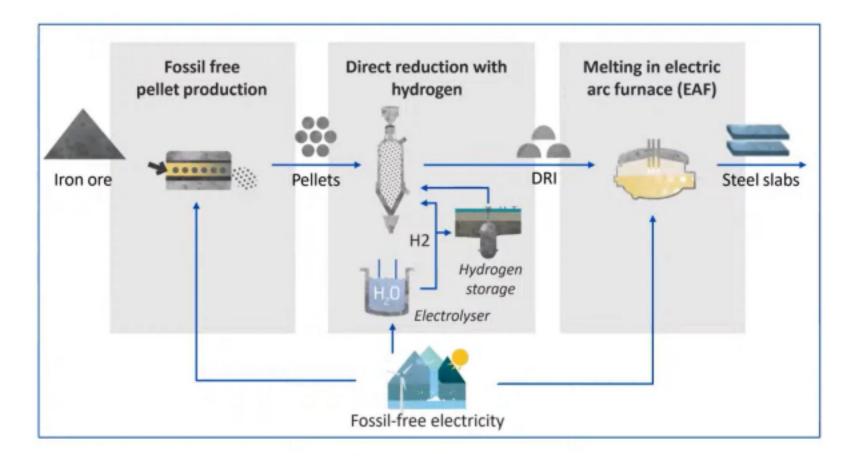
Despite assuming no growth after 2024, our iron estimates lead to 27.9 MtCO2e more

37% of Malaysia's 2016 net emissions

27.9

Note: BCG's iron emissions (2050) = iron emissions (2016) grown linearly at 2.2%p.a. from 2020 to 2050

Source: BCG-WWF: Net zero pathways for Malaysia (2021), Authors' analysis


Base case of Malaysian iron production

Iron products (Hot briquetted iron/Direct reduced iron)	Antara (Sold to Esteel in 2020), Labuan Lion DRI (Sold to Lion Industries in 2021),	DRI	888	75%	80%	0.7	467	497
	Banting* Perwaja, Kemaman*	DRI	1,540	0%	0%	0.7	0	0
		DRI	1,500	0%	0%	0.7	0	0

Iron products (pig	Ann Ioo, Denong	BF		500	43%	80%	1.46	439	818
iron, hot metal, blast	Ann Joo, Penang : Eastern, Kemaman	BF		700	43%	80%	1.46	314	584
furnace)	Lastern, Kemaman								
Authors' estimate To	otal AGF			4,428				1,221	1,899
BUR 3 Total BUR3								1,385	-
Additional	Alliance, Kuantan (2017)	BF	Announced by firm	Built 3,500 in 2017 Additional 6,500 by ?	-	80%	1.46	-	11,68
installations since 2016	Eastern, Kemaman	BF	Announced by firm	Additional 2,000 by 2023	-	80%	1.46	-	2,336
	Lion Industries, Banting	BF	Announced by firm	2,500 by ?	-	80%	1.46	-	2,920
	Wen An, Bintulu	BF	In Construction	10,000 by 2024	-	80%	1.46	-	11,68
	Total additional								28,61
Total									30,5:

Not accounted for in BCG's Net Zero Pathway Report (2021), which took BUR3 figures, then grew emissions at 2.2% p.a. \rightarrow 2,660 ('000tCO2e)

HYBRIT fossil free steel could be commerciable by 2026

• Demonstration plant is being constructed in Gällivare, Sweden by a consortium of SSAB, LKAB, and

Vattenfall and is expected to be completed in 2025 and be commerciable by 2026 • Steel produced will be 20% to 30% more expensive, and there may be a challenge to acquire adequate green hydrogen

Source: HYBRIT consortium, Axelson (2018)

Malaysia needs a phased ap sector	proach to decarbonise the iron and steel
Short run (before 2030)	
	 Immediately stop issuing new blast furnace (lock-in period of 1 years) licenses Reduce demand requirements through improved steel manufacturing yields, extending building lifetime and vehicle lightweighting If demand requires, roll-out new electric arc furnaces which red scrap metal which is supply constrained

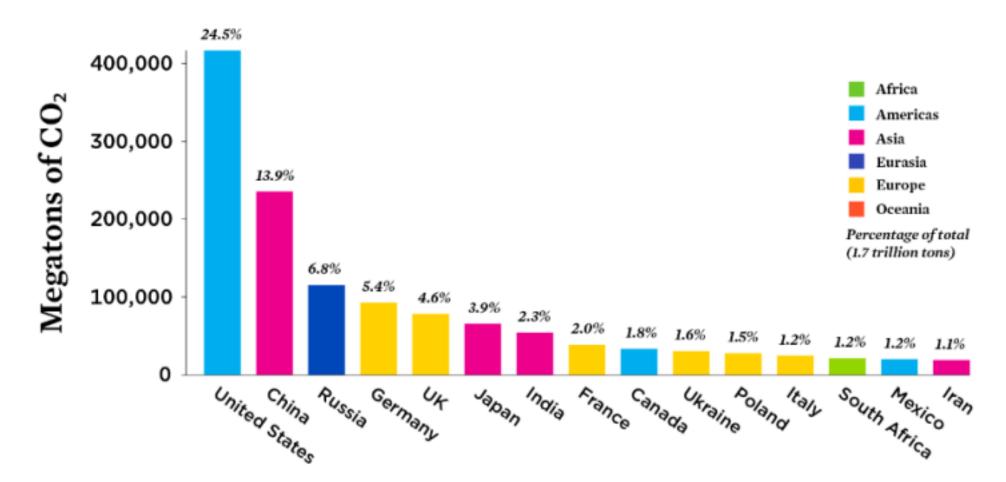
Long run (2030 and beyond)	 Adopt near zero technology at scale as soon as commercially available: HYBRIT at scale Need green / blue hydrogen Need renewable energy for heating and machine movement Hisarna at scale, a novel low emissions blast furnace-basic oxygen green hydrogen is not available
----------------------------	---

Observations

• To be consistent with the 1.5°C pathway which requires global CO₂ emissions to reduce by 43% by 2030 and joint but differentiated responsibilities principle, developed countries need to reduce emissions by more than 43%, and **developing countries like Malaysia should commit to peak emissions by 2030**.

• Policymakers need to be aware that some industries have large lumpy capital investments and demand beyond the local market (e.g. iron and steel). Furthermore, large capital investments result in long lock-in periods. For such industries, estimation of the current carbon emissions should be based on expectation views, not historical views.

• As Malaysia is a technology adopter not a technology innovator, it requires technology transfer from developed countries. Malaysia must therefore specify its technology needs in its "nationally determined contributions" (NDC) to press for activation of the Technology Mechanism in the Paris Climate Treaty, to facilitate **technology development and technology transfer** to implement technology in-pursuit of the long-term vision of the Paris Agreement.


• Review of recent achievement reports by the Technology Mechanism (i.e. "Technology and Nationally Determined Contributions: Stimulating the Update of Technologies in Support of Nationally Determined Contribution Implementation" and "Joint annual report of the Technology Executive Committee and the Climate Technology Center and Network for 2021") provide no evidence that any achievements have been made for the iron and steel for both developed and developing countries.

Near zero emission technologies are more costly than carbon intensive technologies (e.g. HYBRIT steel is expected to cost 20%-30% more than blast furnace steel), developing countries will need the concessionary finance promised in the Paris Climate Treaty to fund installation of the new green technologies at scale.
2017-2018 period developed countries contributed USD25 billion on "grant-equivalent basis"

Common but differentiated responsibilities

Top CO₂ Emitting Countries, 1750-2020

(from fossil fuels and cement)

Source: Union of Concerned Scientists (2021)