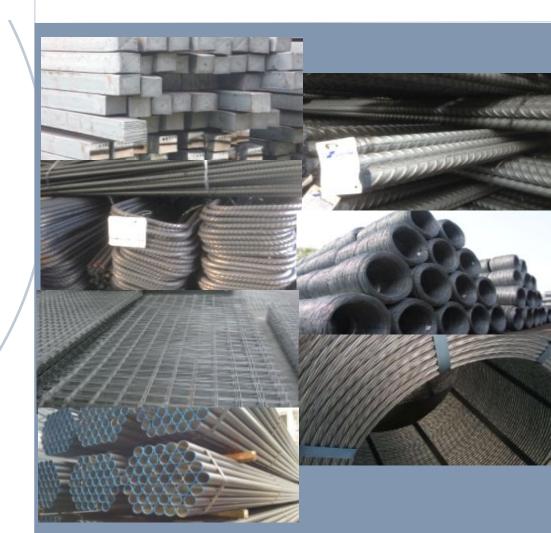
SEAISI Steel Mega Event & Expo (Technology, Sustainability, Construction)

Sunway Pyramid Convention Centre, Malaysia 17 Nov 2022


Upgrade Rolling Mill No.1 Laying Head Machine

Company: Southern Steel Berhad

Project Team: Power Team

Presenter: Lee Soo Chin Ong Say Howe Tan Boon Loong

- Content

Page 2 – 10

- Southern Steel Group
- Southern Steel Berhad
- Vision & Mission
- Organization
- Team Members
- List of Tools
- Milestone Chart
- Meeting Attendance

II. Project Selection & Definition

<u>Plan</u>

- Problem Listing / Selection
- Data Collection / Analysis
- Project Definition
- Root Cause Analysis & Measurement
- Proposed Solution and Action Plan

Page11 - 33

III. Improvement Opportunities Analysis IV. Creative & Innovative Solutions / Implementation V. Monitoring & Standardization

Do

- Implement
- Monitoring
- Verify Action

Check

Page 42 – 47

- Evaluation of Results
- Finalize Solution
- Achievement

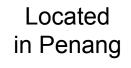
Action

Page 48 – 56

- Standardization
- Monitoring
- Follow up
- Project Completion

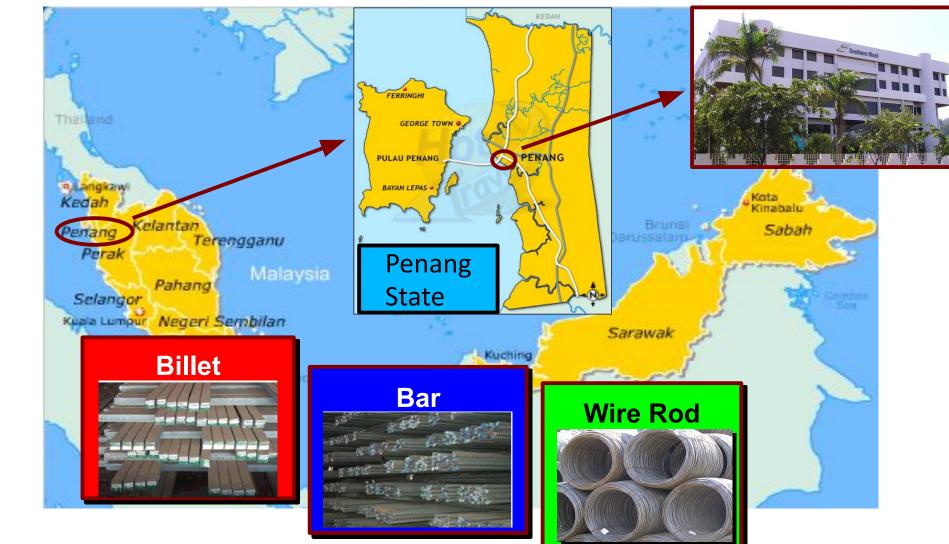
Southern Steel Group

- Leading Malaysian Steel Group
- 59 years of experience
- Expertise in steel products
 - manufacturing (steel mesh, steel
 - pipe, cut & bent, & etc)



TEAM

Southern Steel Berhad Perai, Penang



Founded in 1963

Listed KLSE in 1993

Steel Manufacturers

> Product Range

Company Vision & Mission

OUR VISION

ACHIEVING TO BE A SUPPLIER OF CHOICE TOTAL CUSTOMER SATISFACTION AND ENHANCING SHAREHOLDER VALUE THROUGH DRIVEN PRODUCTS AND CONTINUOUS IMPROVEMENT TECHNOLOGY CULTURE

MISSION STATEMENT

WE ARE COMMITED TO DELIVER SUSTAINABLE STAKEHOLDERS' VALUES THROUGH CUSTOMER-CENTRIC PARTNERSHIPS WITH INNOVATIVE PRODUCTS AND SOLUTIONS TO CO-CREATE VALUES IN THE INDUSTRY

Organization

Biographical Data

Company	: Southern Steel Berhad
Team	: Power Team
Project Title	: Upgrade Rolling Mill No.1 Laying Head Machine
Dept. / Section	: Rolling Mill No.1 & 2/Machine Roll Shop
Work Location	: Rolling Mill No. 1 Laying Head
Team Formation	: 18 February 2016
Project Duration	: Feb'16 – Mar'18

Team Member


Name	Role	Position		
Tan Boon Loong	Project Owner	Plant Manager		
Ang Leow Hong	Team Facilitator	Mechanical Head		
Ng Hock Teik	Team Leader	Engineering Manager		
Ong Say Howe		Assistant Eng. Manager		
Ng Hock Keong		Senior Eng. Executive		
Khor Chun Leng		Eng. Executive		
Lim Wenn Dar	Team Member	Senior Production Engineer		
Jamal		Mechanical Engineer		
Mohd Farid		Engineering Supervisor		
Lee Soo Chin		Electrical Engineer		
Aw Kwok Kong		Senior Eng. Engineer		

Methodology

Milestone Chart

		2	0 1	6			2	0 1	7		2 0) 1 8	
PDCA Phase / Month	Jan	Feb	Mac	Apr-June	Q3'16	Q4'16	Q1'17	Q2'17	Q3'17	Q4'17	Jan	Feb	Mar
PLAN													
- Problem Listing / Selection													
Data Collection / Analysis													
Root Cause Analysis & Measurement													
- Proposed Solution and Action Plan													
DO													
- Implement													
Monitoring	•												
- Verify Action													
CHECK													
Evaluation of Results													
- Finalize Solution													
- Present to Management													
ACTION													
Standardization													
- Monitoring													
- Follow up													
- Project Completion													
PROGRESS				BEFORE				DURING I	MPROVEN	1ENT		AFTE	ER

Legend :

SCHEDULE

ACTUAL

DO & CHECK = During Improvement (When solution is developed and implemented)

Meeting Attendance

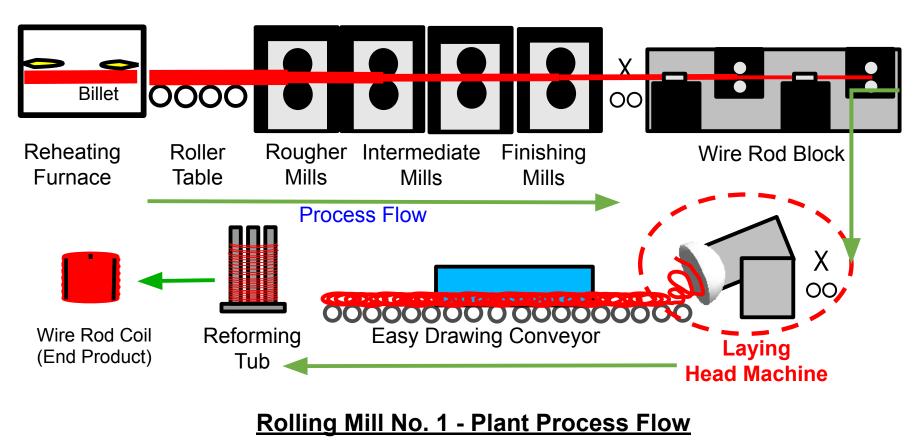
Project Title: Upgrade Rolling Mill No.1 Laying Head Machine Venue: MRS Office Meeting Room

	Meeting No	1	2	3	4	5	6	7	8	9	10
No	Name	18/2/16	20/4/16	16/6/16	19/08/16	14/10/16	20/12/16	6/3/2017	15/6/17	17/8/17	15/11/17
1	Ang Leow Hong	/	/	/	/	/	/	/	/	/	/
2	Ng Hock Teik	/	/	/	/	/	/	/	/	/	Х
3	Ng Hock Keong	/	/	/	/	/	X	/	/	/	/
4	Khor Chun Leng	/	Х	/	/	/	/	/	/	/	/
5	Lim Weng Dar	/	/	/	/	/	/	Х	/		/
6	Jamal	/	Х	/	/	/	/	/	/		/
7	Mohd Farid	/	/	/	/	Х	/	/	/	/	/
8	Lee Soo Chin	/	/	/	/	/	/	/	/	X	/
9	Aw Kwok Kong	/	/	X	/	/	/	/	/	/	/
	/ Present x Absent Attendance Rate 91.0%										
1	NOTE: 1 The persons who are absent had given the acceptable reason, such as on leave, attended to other job/meeting 2 The persons absent were briefed immediately by team leader after the meeting.										

Ong Say Howe joined as team member after manpower restructuring in 1st October 2021

PLAN

- Problem Listing / Selection
- Data Collection / Analysis
- Project Definition
- Root Cause Analysis & Measurement
- Proposed Solution and Action Plan



Location

Where and What is Rolling Mill No.1 Laying Head Machine ?

Selection Grid

Selection grid had been done by all the team members against the need for improvement of Critical Factor in Rolling Mills, 2016 :

	Critical Factor	10 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -	stomer sfaction		ost Vs enefits		anisation Soals	No. No. and	ed For ovement	Res	ources	Total Score
		Pts	<u>Vote</u>	Pts	<u>Vote</u>	Pts	<u>Vote</u>	Pts	<u>Vote</u>	Pts	<u>Vote</u>	
1	Safety, Health &	(5)	4	(5)	5	(5)	4	(5)	3	(5)	4	
	Environment	(3)	6	(3)	5	(3)	5	(3)	4	(3)	4	
		(1)	0	(1)	0	(1)	1	(1)	3	(1)	2	
		Tot	al = 38	Tot	al = 40	Tot	al = 36	Tot	al = 30	Tota	al = 34	178
		Dta	Mata	D4-	Mata	Dta	Mata	Dte	Mata	Dte	Mata	
2	Maine Cost	Pts	Vote 7	Pts	Vote 7	Pts	<u>Vote</u>	Pts	Vote 7	Pts	Vote	
2	Major Cost	(5)	7	(5)	7	(5)	8	(5)	7	(5)	5	
	Reduction	(3)	3	(3)	3	(3)	2	(3)	3	(3)	4	
		(1)	0	(1)	0	(1)	0	(1)	0	(1)	1	
		Tot	al = 44	Tot	al = 44	Tot	al = 46	Tot	al = 44	Tota	al = 38	216
	*	Pts	Vote	Pts	Vote	Pts	Vote	Pts	Vote	Pts	Vote	
3	Inventory	(5)	<u>- voie</u> 5	(5)	<u>- vote</u> 6	(5)	<u></u> 7	(5)	<u>- vote</u> 6	(5)	<u>5</u>	
5	Reduction	(3)	4	(3)	4	(3)	3	(3)	3	(3)	4	
	Reduction		4		4		0		1		4	
		(1)	•	(1)		(1)	_	(1)	•	(1)	1	202
		Tot	al = 38	Tot	al = 42	Tot	al = 44	Tot	al = 40	Tota	al = 38	202

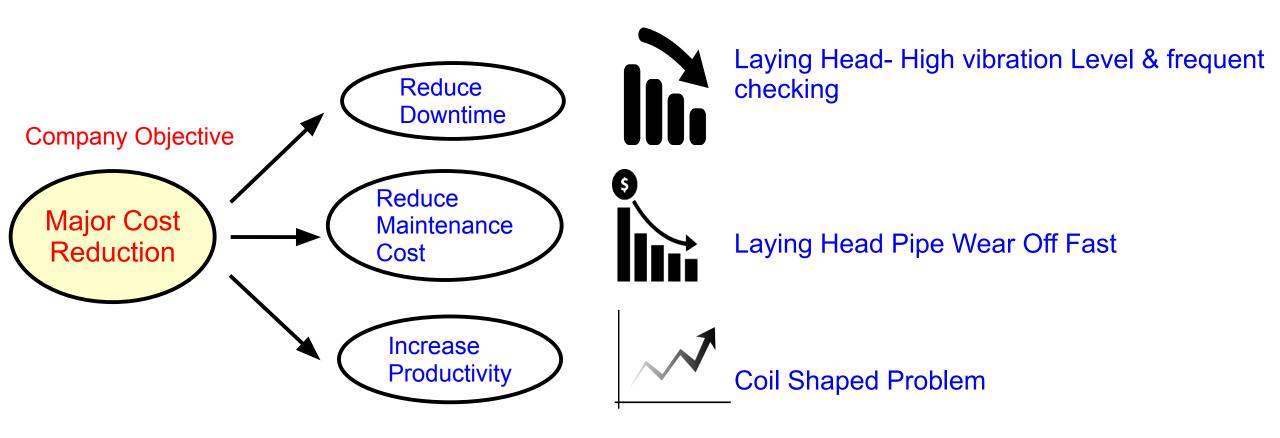
The highest score – Major Cost Reduction Then, we focus on this pain point for improvement.

南

達

Southern Steel

A Member of the Hong Leong Group


pg.13

Selection Grid

For maintenance and production area, the MAJOR COST REDUCTION can be achieved from : -

Southern Steel

A Member of the Hong Leong Group

pg.14

南 達

Selection of Problem

	Plant	2015	2016	Remarks
Laying Head Downtime Record	Rolling Mill 1	0.98	1.02	2016 one improvement Project had been formed
Analysis (%)	Rolling Mill 2	0.21	0.22	
Rolling Mill No. 1 Laying Head Pipe	Rolling Mill 1	0.93	0.69	Higher cost compared to Rolling mill No. 2
Cost Analysis (MYR/MT)	Rolling Mill 2	0.09	0.08	
Coil Shape Out Tangle(Rejection%)	Rolling Mill 1	0.07	0.07	Higher coil shape rejection compared to Rolling Mill No. 2
	Rolling Mill 2	0.03	0.04	

Problem identification (methodology)

head in 2015, 2016 & 2017

& 2017 with respective output.

Selection of Problem

2015, 2016 & 2017

Production Output Rolling Mill No. 1 Investigate the cost spent on laying head pipe in Rolling Mill No. 2 Analyzed the frequency of pipe changes of laying Calculated the total pipe cost for Year 2015, 2016 2015 2016 2017 3 years Laying Head Pipe **Cost/Output**

RM1 vs RM2 <u>9 times higher</u>

Compare the Cost with Rolling Mill No.2

1.

2.

3.

4.

Confirmation of Problem

Therefore, we confirm the potential improvement area from here, and we decide to -

- Old Design / Unreliable
- Hard to maintain due to gear box complex design & in closure type housing
- Laying Head Pipe Wear-off Fast
- High Vibration Level & Downtime
- Coil Shaped Problem

Upgrade Rolling Mill No. 1 Laying Head Machine

Why this project was selected ?

Align with the department's structure tree – To reduce production downtime and maintenance cost in order to achieve the objective of reduce conversion cost.

There is potential to improve the laying head in Rolling Mill No. 1. As we can see the different type of system used in Rolling Mill No.2 gives less problem and better performance.

Objective & Target Setting

Company Objective

Cost & Quality (Cost Down)

Machine Roll Shop **Structure Tree**

Reduce Downtime Reduce Maintenance Cost

Objective

To improve the efficiency of Rolling Mill No 1 Laying Head Machine To improve coil shape and prolong life span of Laying Head Pipe

Laving Head Pipe Cost

Southern Steel

A Member of the Hong Leong Group

pg.18

南

逹

Before MYR 0.65 / MT

Target Below MYR 0.30 / MT

Average record in 2015, 2016 & 2017: Rolling Mill No. 1 Laying Head Pipe cost = MYR 0.65 / MT

Target to reduce > 50% to MYR 0.30 / MT with benchmark to Rolling Mill No. 2 Laying Head MYR 0.07 / MT

The expect rolling tonnage 300k per year Target Saving = MYR105k/ yr

Machine Definition & Problem

Laying Head high vibration and downtime

Laying pipe fast wear-off

Gearbox overhauling/servicing need longer time

General Specification

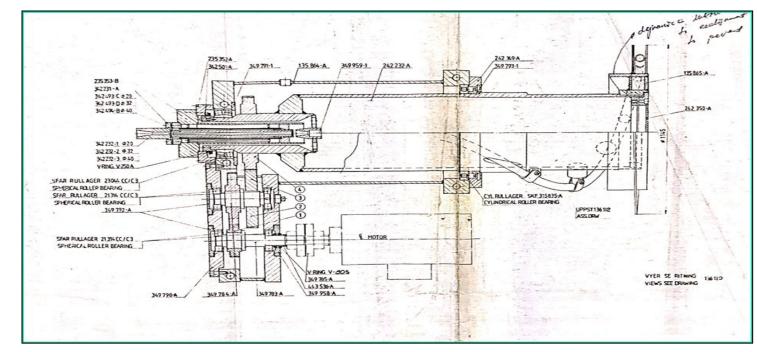
Bar dimension	: dia 5.5mm~22mm
Machine Unit	: 5.92 tons
Dimension	: 1520 x 1000 x 1175mm
Drive	: AC Motor 240kw,
	2500 RPM 415v 50Hz
Motor Weight	: 360kg

Rolling Mill No. 1 Laying Head Main Parts

Function of Laying head

 High-speed precision device in hot-rolled wires production

line


- Located in water cooling section after the finishing mill.
- Wire rods pass through the rotated laying pipe to form coils and lay on conveyor roller table

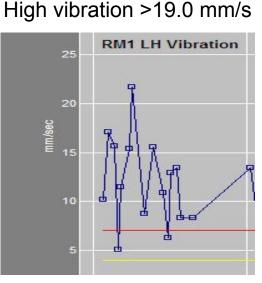
II. Project Selection & Definition

南 達 Southern Steel pg.20

Definition

Laying Head Cross Section View

This project is to upgrade RM1 Laying Head with open type gearbox housing (as the item shown above) to achieve the objectives :-


- 1) Reduce Laying Head Breakdown time & vibration level
- 2) Shorten gearbox overhaul time & plan stoppage time
- 3) Enhance laying head pipe life span
- 4) Improve Coil shape & reduce rejection

9

Problem Definition

Laying head pipe fast wear-off

Coil Shape Problem

Closure Type Gearbox Structure

Southern Steel

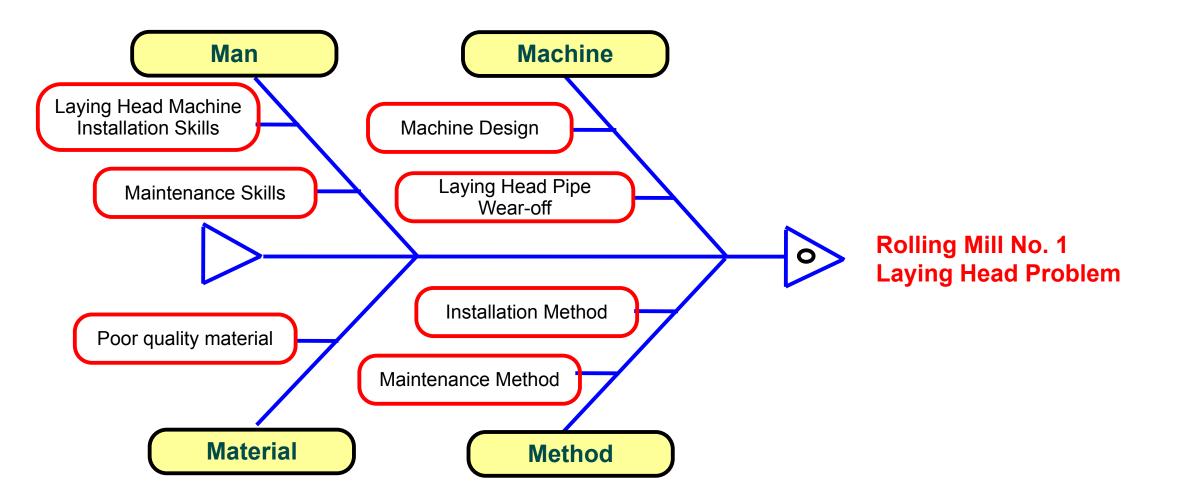
A Member of the Hong Leong Group

pg.21

南

達

Problem of Existing Laying Head :

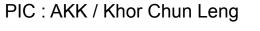

- 1. Production Breakdown for checking on high vibration level
- 2. Laying Head pipe wear-off with low production tonnage
- 3. Wire rod coil out of shape
- 4. Gearbox structure not ease for maintenance
 - Time consume for gearbox overhaul work
 - Unsafe for remove the rotor shaft

List of All Possible Causes

List Out All Possible Causes

All the possible causes is listed to carry out further analysis and verification of actual root causes.

Rolling Mill 1 - Laying Head						
4 M	Possible Root Cause	Details				
Man	Laying Head Pipe Installation Skill	Not installed by trained persons.				
	Maintenance Skill	Not serviced by trained persons.				
Machine	Loving Hood Machine Structure	Laying Head not reliable				
Machine	Laying Head Machine Structure	Rotor not balancing				
Material	Deer Quelity Meterial	Laying Head Pipe fast wear-off				
Material	Poor Quality Material	Unreliable Laying Head Pipe material				
Method	Installation Method	Installation not follow instruction manual.				
IVIELIIUU	Maintenance Method	Maintenance not follow instruction manual.				



	MAN	
Possible Root Cause	Analysis / Inspection	Findings
Laying Head Pipe not install by Skill Person	 Actual inspection had been carried out at machine site to record down the persons on work in each shift. Checked the skill profile of persons on work. 	The 4 persons work on this job had been trained based on installation guide, they are competent.
Laying Head not service by trained persons.	 The maintenance crews is well train and specialize in servicing main gearbox & others critical machine Checked the skill profile of persons on work. 	The person in charge work on this job had been trained.

	MACHINE	
Possible Root Cause	Analysis / Inspection	Findings
Laying Head design not reliable enough.	Analysis of the physical item had been done (Refer to slide 21)	RM1 Laying Head Design not reliable enough compared to RM2 Laying Head
Laying Head Rotor Balancing	Checking on Laying Head Rotor in good condition. No aging and any abnormality found	Rotor still well function during operation.

PIC : Lim Wenn Dar /Mohd Farid

	MATERIAL	
Possible Root Cause	Analysis / Inspection	Findings
Laying Head Pipe Fast Wear-off	Inspection had been carried out on the actual pipe wear off condition & proper record was done.	 The pipe changed with low production tonnage Mill scale accumulated in the pipe and machine vibration accelerated caused the pipe wear-off.
Laying Head pipe material not suitable	Analysis of the material for a typical wear-off pipe	 The material similar to Rolling Mill No. 2 It is suitable as used in Rolling Mill No. 1 Laying Head pipe.

PIC : NHT / NHK

	METHOD	
Possible Root Cause	Analysis / Inspection	Findings
Laying Head Pipe Installation not carry out properly	Inspection had been carried out to check the method applied by the persons on installation job.	The persons follow instruction manual as they were trained well in RM1 & RM2 laying head pipe installation
Laying Head Maintenance not follow instruction manual	Inspection had been carried out to check the method applied by the persons on maintenance and servicing	The persons follow the Instruction manual & laying head overhauling follow 150kmt production tonnage. Check/Change the parts so that all are confirm based on manufacturer specification

PIC : NHT / NHK

南 Southern Steel pg.28 達 A Member of the Hong Leong Group

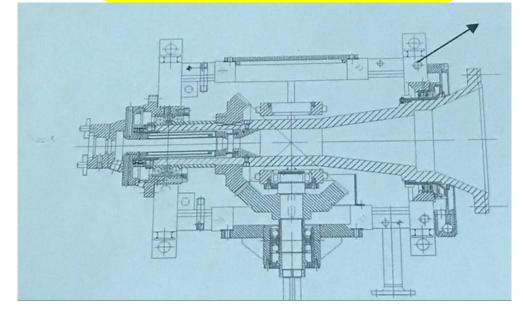
Root Cause Analysis

Comparison of laying head unit in Rolling Mill No. 1 & Rolling Mill No. 2

Rolling Mill No. 1 Laying Head 349959-1 242 232 A 35 864-A 23533-8 3-2231 -A 342493 (+ 20 342 493 0 0 30 312494-80 342232-1 020 342222-2 032 342222-3 040 VRING VIZSOA SFAR RULLAGER 23044 CC/C3 SPHERICAL ROLLER BEARING CYL RULLAGER SKE 315835A CYLINDRICAL ROLLER BEARING SFAR RULLAGER 2134 CC/C3 UPPST136112 SFAR PULLAGER 21314 CC/C3 SPHERICAL ROLLER BEARING 43536A 349 958-A

Weak Pt. 1 High Vibration Require checking

Weak Pt. 3


Gearbox housing not open frame type, time consuming on gearbox overhaul

Weak Pt. 2 Laying Head pipe wear-off fast

Weak Pt. 4

Coil Shape Out

Rolling Mill No. 2 Laying Head

- Rolling Mill No 2 Laying Head low vibration,
- Open frame gearbox type
- Laying Head pipe can last up to 60,000 MT.
- Coil shape less problem

Rolling Mill No. 1 Laying Head Machine Weak Points

DESIGN	<u>WEAKNESSES</u>	<u>COMPLICATIONS</u>	
<mark>Weak Pt. 1</mark> Laying Head High Vibration level	High vibration caused downtime for checking & coil shape problem	High downtime & Low productivity	
<u>Weak Pt. 2</u> Laying Head Pipe wear off fast	Laying Head pipe change frequently	High maintenance cost on Laying Head pipe	
Weak Pt. 3 Gearbox housing not in open frame type	Time consuming & unsafe on gearbox overhaul	Consume longer time & unsafe to remove gear shaft and rotor	
<mark>Weak Pt. 4</mark> Coil Shape Out (Tangle)	Quality rejection	Production breakdown for Laying Head pipe change	

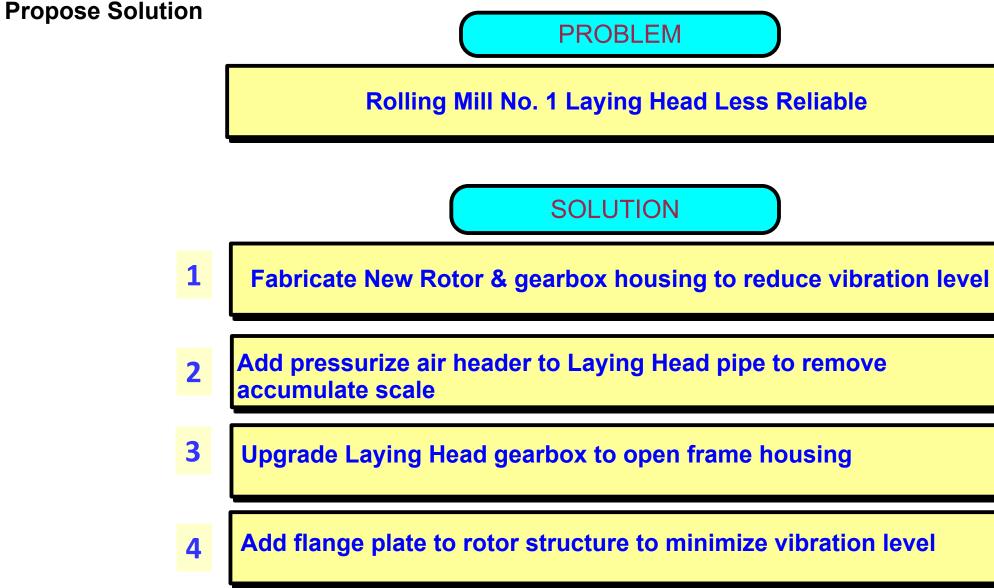
南 達

Southern Steel

A Member of the Hong Leong Group

pg.29

Summary of Root Cause Analysis


After we have carried out the detail analysis for all the possible causes, it can be summarized as follows :

RM1 Laying Head			
4 M	Possible Root Cause	Details	Findings (/ or x)
Man	Laying Head Pipe Installation Skill	Not installed by trained persons.	x
	Maintenance Skill	Not serviced by trained persons.	X
Machine	Laying Head Machine Structure	Laying Head machine not reliable	/
Machine		Rotor not balancing	X
Material	Material No Good	Laying Head Pipe wear-off fast	/
Material		Laying Head Pipe material not suitable	X
Method	Installation Method	Installation not follow instruction manual.	X
Method	Maintenance Method	Maintenance not follow instruction manual.	X

Cost Benefit Analysis

We selected all the proposed solutions, and the detail calculation of payback for New Laying Head Unit is shown as follows :

	Item Description / Details	Unit
1) Project Cost	Fabricate Gearbox Housing ,rotor & others parts RM280,000 & Laying Head internal bent pipe RM3,500	MYR 283.5K
2) Cost Benefit (Assumption)	 2a) Assume cost reduction to 50% Laying Head pipe cost saving = MYR105k 2b) Gearbox overhaul time reduced from 2days to 1.5days, Time saving = 720mins Gearbox overhaul 2 times in one year, Time saving = 720mins x 2/60 = 24hrs /yr Cost benefit = <u>MYR 180K/ yr</u> 	<u>2a + 2b</u> MYR285K per year
3) Payback	= (1) / (2) = 283.5k /285k	<1.0 year

Action Plan

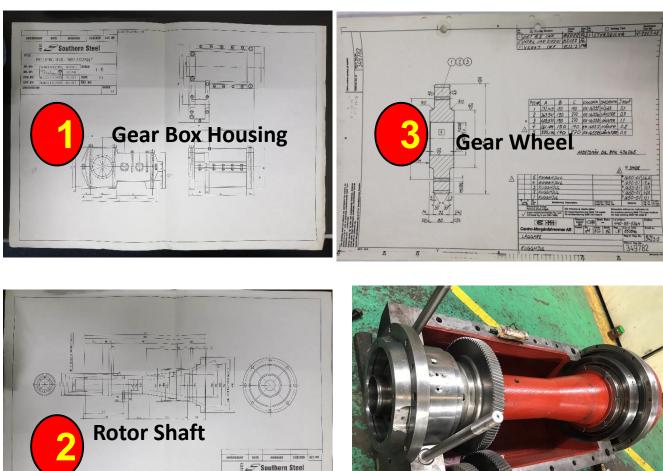
Problem	Identified Solution	Plan Start	PIC
Laying Head Machine Problem	Upgrade Rolling Mill No. 1 Laying Head with new gearbox housing & rotor	Mid Mar '17	NHT Khor CL NHK Jamal Farid AKK

ACTION PLAN SCHEDULE

No	Implementation/Action	Plan Date	PIC
1	Study & Prepare Laying Head Engineering Design	Feb'16 ~Mar'16	NHT
2	Getting Mgmt Approval & Budgetary Cost	'Mar'17	NHT
3	Establish Assembly Drawing	Mar'17	NHK
4	Prepare Details Drawing	Mar'17 ~April'17	NHK
5	Sourcing for Quotation (Local Fabrication)	Apr'17 ~May'17	NHK
6	Justification & Award	May'17	NHT
7	Parts Delivery		
а	Gearbox housing	May'17 ~Oct'17	NHK
b	Rotor shaft	May'17 ~Oct'17	NHK
С	Laying Head Pipe & others parts	May'17 ~Sept'17	Jamal
8	Laying Head Assembly (Offline)	Nov'17 ~Dec'17	KCL/Farid
9	Laying Head Installation(Online)	Jan'18~Feb'18	KCL/Farid
10	Testing & Commissioning	Jan'18~Feb'18	Jamal/AKK

<u>Do</u>

- Implement
- Monitoring
- Problem Encountered



Creative Solution

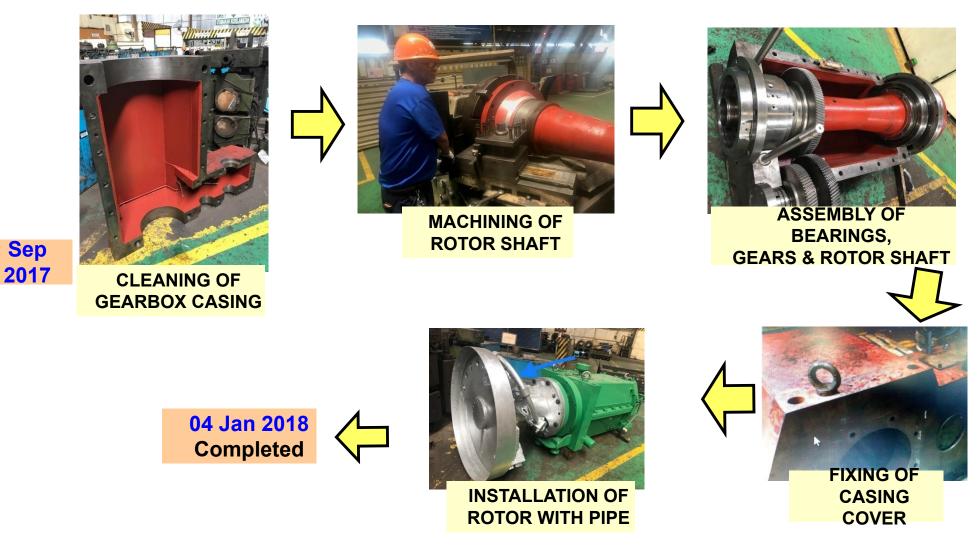
The parts listed below had been prepared for assembly at workshop.

No	Description	Qty	Total Price (MYR)	
1	Gear Box Housing	1 unit	190,000,00	
2	Rotor	1 unit	180,000.00	
3	Gear Wheel	1 set	45,326.25	
4	Bearing	1set	38,635.00	
5	Flange, spacer, collar, shaft, & laying head pipe	1 set	13,757.00	
	Total	1 set	Approx 280,000.00	

南 達

Southern Steel

A Member of the Hong Leong Group


pg.35

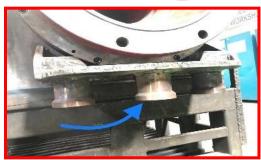
Project Execution – Offline Preparation

Project Execution – Upgrade Features

Additional Protection Plate To avoid wire rod head and tail stuck at rotor fixed structure

Add in pressurized air line to remove accumulated scale in Laying Head pipe

Open Top Gearbox Structure Ease for maintenance Save time to remove rotor & gear Safe on overhauling



Project Execution – Upgrade Features

Slot in Lubrication Pipe Save time Less work

Isolate Gearbox structure from Rotor for easy maintenance Common Spare Part on Rotor & Gear wheel with Rolling Mill No. 2

> New Laying Head Unit is ready

POWER TEAM

Project Execution

Plan Vs Actual

No	Implementation/Action	Plan Date	Actual	PIC	Status
1	Study & Prepare Laying Head Engineering Design	Feb'16 ~Mar'16	Feb'17	NHT	Done
2	Getting Management Approval & Budgetary Cost	'Mar'17	Mar'17	NHT	Done
3	Establish Assembly Drawing	Mar'17	Mar'17	NHK	Done
4	Prepare Details Drawing	Mar'17 ~April'17	Apr'17	NHK	Done
5	Sourcing for Quotation (Local Fabrication)	Apr'17 ~May'17	Apr'17	NHK	Done
6	Justification & Award	May'17	Apr'17	NHT	Done
7	Parts Delivery				Done
7.a	Gearbox housing	May'17 ~Oct'17	Sept'17	NHK	Done
7.b	Rotor shaft	May'17 ~Oct'17	Oct'17	NHK	Done
7.c	Bearing & others parts	May'17 ~Sept'17	Oct'17	Jamal	Done
8	Laying Head Assembly (Offline)	Nov'17 ~Dec'17	Nov'17	KCL/Farid	Done
9	Laying Head Installation(Online)	Jan'18~Feb'18	Jan'18	KCL/Farid	Installed in
10	Testing & Commissioning	Jan'18~Feb'18	Jan'18	Jamal/AKK Jan'18	

Implementation & Monitoring

- Laying Head gearbox housing arrived on site in Sept 2017.
- The housing was check and clean in next day.
- The rotor shaft received in mid Oct '17.
- The rotor shaft being check & inspected by Machine Roll Shop maintenance crew
- During the checking, the rotor shaft diameter is slightly over the required diameter and bearing will not fix in place. The rotor shaft required for machining.
- The process installation of new Laying head follow the proper procedure and all bearing & gear were put in place. High Precision bearing was installed.
- Laying head unit ready in Nov '17 & waiting for installation.

Southern Steel

A Member of the Hong Leong Group

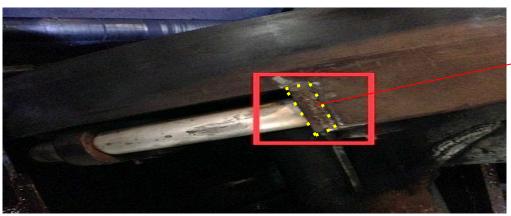
pg.40

南

<<Click here for a video>>

Problem Encountered

Rolling Mill No. 1 New Laying Head Machine Abnormal Sound & High **Vibration**

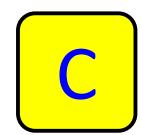

PROBLEM ENCOUNTERED

- Laying head pipe ejected from • origin
- Generate abnormal sound during • operation

南 達

ACTION TAKEN

Kaizen : Add guide plate 50 mm to hold the Laying Head pipe.



Southern Steel

A Member of the Hong Leong Group

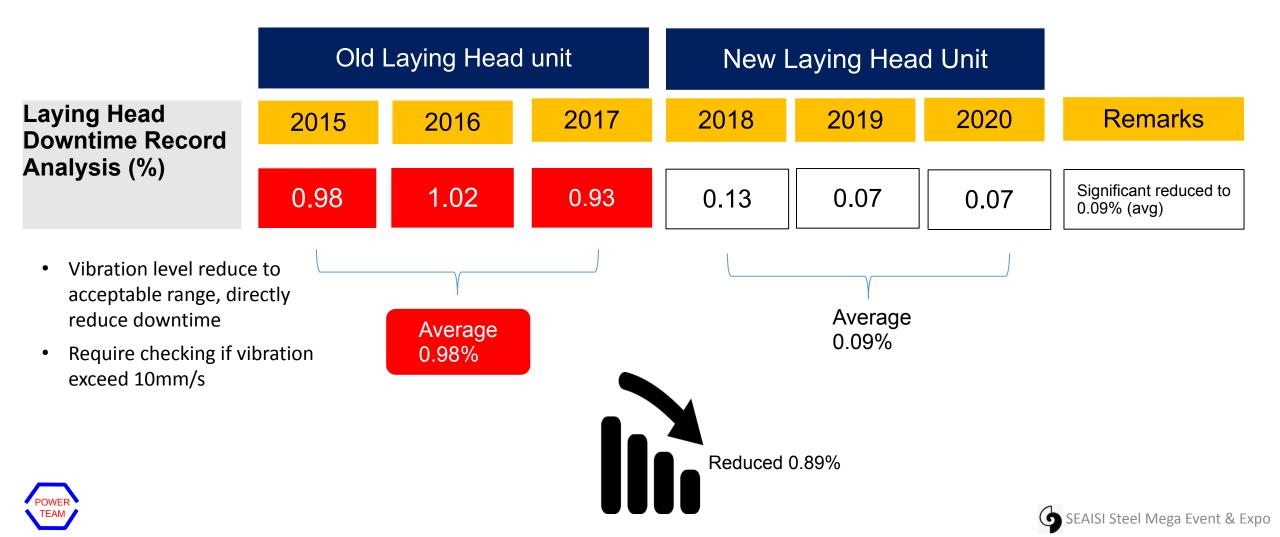
pg.41

Check

- Evaluation of Results
- Finalize Solution
- Presentation to

Management

Comparison of Before and After Vibration Level


南

逹

Southern Steel

A Member of the Hong Leong Group

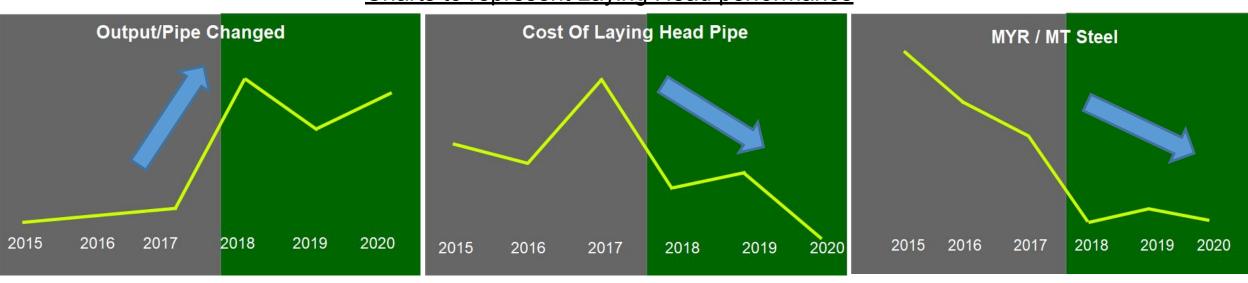
pg.43

Vibration Monitoring-Old Versus New Laying Head Unit

Rolling Mill No. 1- Laying Head Vibration Level

Balancing Adjustment Chart Before After • 0 0 Before After Control level 10 mm/s Old Design New Design

Laying Head Design	Balancing level improvement	After Balancing - Findings
Old design	0%	Above 10 mm/s
New design	100%	Below 10 mm/s

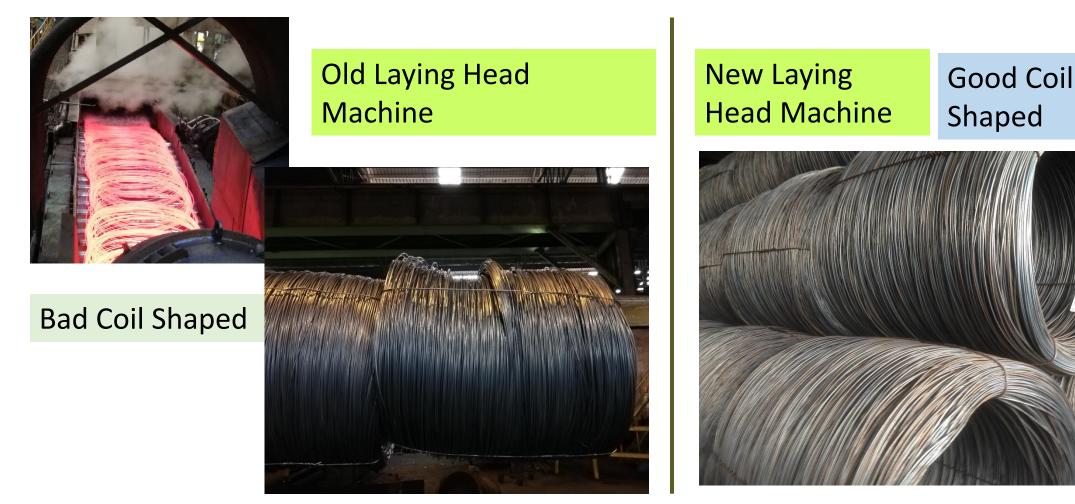

Control below 10.0mm/s

Laying Head Pipe life span has improved to 4.5 times, therefore conversion to 78% of performance improvement with total saving of MYR 197,000.

Charts to represent Laying Head performance

Life span improved 450%

Reduced 57% spending


Improved 78% performance

Coil shape condition improved

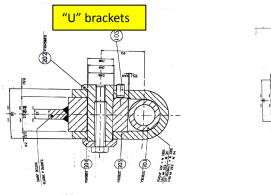
Final Solution

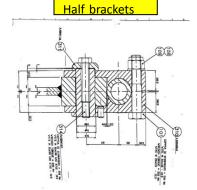
- Preliminary installation in <u>Dec 2017</u> to matching with existing foundation footing
- All proper procedures were followed in the installation job, and *positive results had been obtained*.

- The Laying Head machine installed according to the schedule.
- The new gear and shaft were assembly properly & fix to new structure.
- Test & commissioning done in <u>Jan 2018</u> Checking on Vibration Level in acceptable range

Action

- Standardization
- Monitoring
- Follow up
- Project Completion



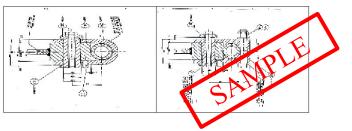

V. Monitoring & Standardization

Standardization - Laying Head Pipe Installation SOP

Established SOP

- For clearer &
- proper installation
- Standardized locking torque on tightening U bracket & half bracket

Established SOP to avoid improper installation cause high vibration issue



SOP of Replacement of Laying Head Pipe

- Unscrew (1) the tightening between Laying Head Machine with rotor M36 screw.
- Push forward and carry up the rotor to the workshop for the replacement of the pipe.
- Cut the protective wires which tie the bolt on the brackets of the pipe.
- Loosen and remove the fixing bolt of the (3) "U" brackets and of the (2) half brackets that block the laying head pipe to the supports welded on the rotor.
- Moreover, loosen and remove the fixing bolts of the laying head pipe and the half brackets.
- Remove the (4) laying head pipe.
- Insert the new laying head pipe sufficiently to it into contact with the bracket. When inserting the laying head pipe.
- Fasten the laying head pipe to the rotor by means of (3) "U" brackets and by means the (2) half brackets.
- For what concerns the locking torques of the various fixing bolts of the laying head pipe, see the following table:

	Locking Torque (Nm)	Locking points
Bolt locking the half brackets to the rotor.	200	1
Bolt for blocking the half brackets to the turn forming pipe.	500	1
Bolts for blocking the "U" brackets to the rotor.	200	4

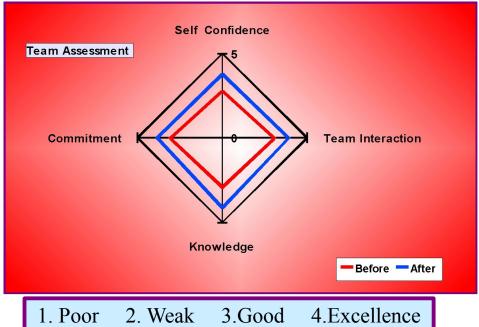
Competency Training Record

				Interes	Southern Steel Ber				
				interi	nal Training & Assessm	ient rRecord			
urse	Title: Hands-on Prac	tical Train	ing for Inst	allation Laving H	lead Pipe				
	Provider/Assessor:				read ripe				
	Leader: Ng Hock Ked								
nue: I	Rolling Mill No. 1 La	ying Head	L						
			Traini				A	ssessment	
	Trainee's Name	Emp No		Training Date	Trainee's Signature	Date Assessment	Туре	Competency	Assessor's Signature
1	ESVARAN		RM1 MM	18-Jan-18	Ba.	19-Jan-18	Hand on	Competent	A
2	ZUBER	688A	RM1 MM	18-Jan-18	Where .	19-Jan-18	Hand on	Competent	24
3	RENGANATHAN		RM1 MM	18-Jan-18	R.	19-Jan-18	Hand on	Competent	N.
4	SIVAKUMAR	1332A	RM1 MM	18-Jan-18	Sam	19-Jan-18		Competent	
5									- Fr
6									
7									
8									
9									
0									
.1									RV
.2									
.3									S

COMPETENCY TRAINING RECORD FOR LAYING HEAD PIPE INSTALLATION

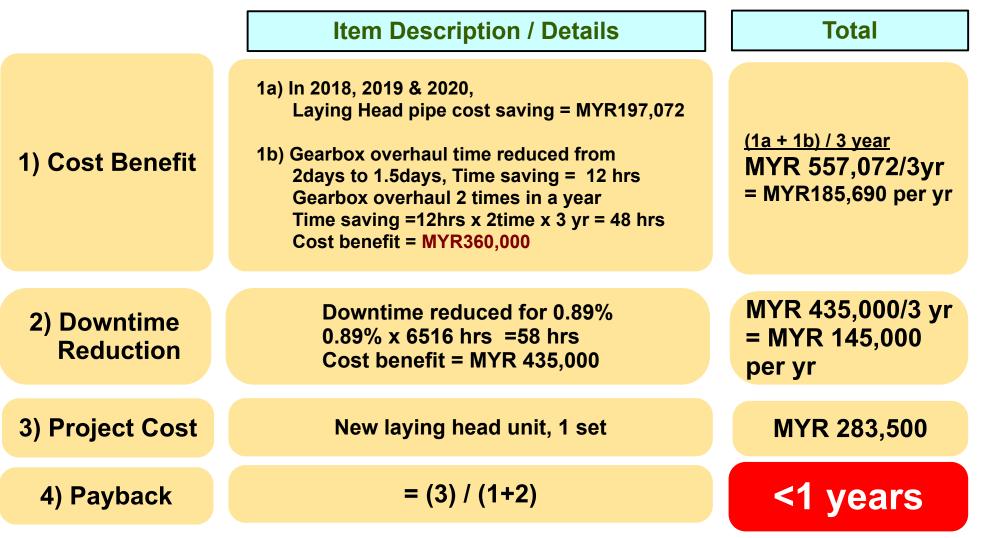
Impact to Team Members

- 1) Improve various type of skills for team members such as problem solving and presentation.
- 2) Form a good teams work & promote collaboration among the team member.
- 3) Share ideas among members for total improvement.
- 4) Promote higher commitment to job performance.
- 5) Work towards a smarter way and provide extra time to family, etc.



Team Self-Assessment

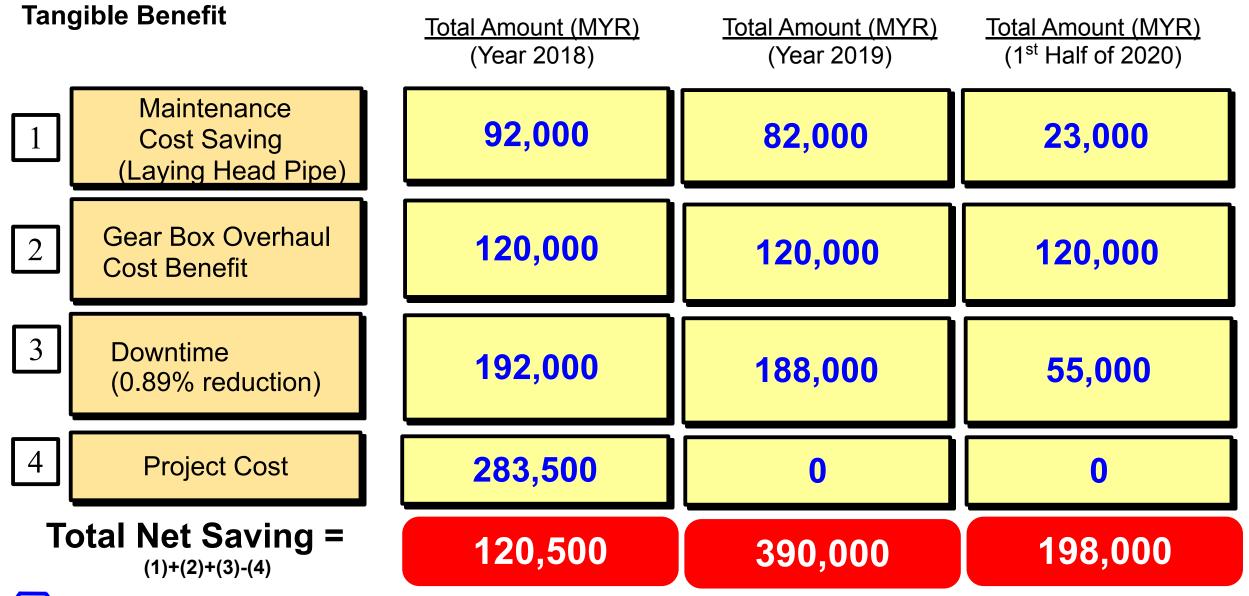
	Knowledgeable		Comm	Commitment Self Co		dence	Team Interaction	
Member Name	Before	After	Before	After	Before	After	Before	After
Ng Hock teik	3	4	3	4	3	4	3	4
Ng Hock Keong	3	4	3	4	3	4	3	4
Khor Chun Leng	3	4	3	4	3	4	3	4
Lim Weng Dar	3	4	3	4	4	5	3	4
Jamal	3	4	2	4	3	3	3	4
Mohd Farid	3	4	2	4	3	4	3	4
Lee Soo Chin	3	4	3	3	2	4	3	4
Aw Kwok Kwong	2	3	2	3	2	3	2	3
Average	3	4	3	4	3	4	3	4



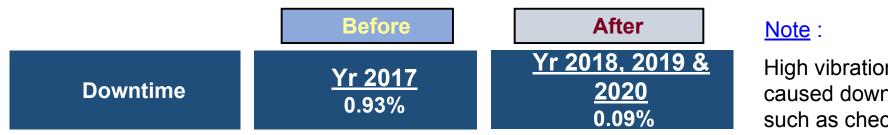
南 達 Southern Steel pg.53

Payback

RM1 Laying Head Net Cost Benefit (2018~2020)



(Saving is compared with the Amount of Before Improvement period (2015,2016 & 2017).



Others Benefit

High vibration caused downtime, such as checking & balancing

			<u>Note</u>
Coil Tangle (Rejection%)	<u>Yr2017</u> 0.19%	<u>Yr2018</u> 0.06%	Coil s reject
		<u>Yr2019</u> 0.05%	
		<u>Yr2020</u> 0.06%	

<u>te</u> :

shape problem, ction reduced

Upgrade Rolling Mill No. 1 Laying Head machine

THE END

Thank you !

