2022 SEAISI STEEL MEGA EVENT & EXPO

Application of Expert systems to WWTPs in CSC

Wan-Ju Liu Scientist, China Steel Corp.

Outline

- **1.** Introduction
- 2. Expert system in Biological WWTP
- 3. Expert system in Industrial WWTP
- 4. Summary

1.1 Introduction of CSC

- 1) China Steel Corporation (CSC), located at Kaohsiung, Taiwan, was founded in December 1971.
- 2) It is the largest steel company in Taiwan with annual production (in terms of crude steel) around 10 million tons.
- **3)** The domestic market takes roughly 65% of CSC's production and the exports take 35%. The major export destinations are Mainland China, Japan, and Southeast Asia.

1.2 Water balance in CSC

Note: The reclaimed water and tap water mentioned above are both fresh water.

HINASTEEL

1.3 Wastewater treatment in CSC

2.1 Composition of Coke Oven Wastewater

- 1) Coke oven wastewater contains 80% of the COD and 90% of the ammonia nitrogen produced from the entire CSC plant.
- 2) The composition of coke oven wastewater is complicated and mainly includes phenolics, thiocyanate, ammonia nitrogen, and cyanide.

2.2 Problems and difficulties

Biological WWTP used to only treat COD Ammonia nitrogen of effluent:400~500mg/L Reconstruction

Ammonia nitrogen of effluent: <10 mg/L

Ammonia nitrogen of discharge water needs <20 mg/L before 2017.11.01

Reconstructed in the original WWTP

- **HRT is only 38 hrs**
- the system is more vulnerable to the fluctuations in the coke oven wastewater
- **I** the residual organic compounds inhibit the nitrification reaction

2.3 Biological WWTP treatment process after reconstruction

2.4 Flowchart to build a expert system

CHINASTEEL

2.5 Evaluate and screen relative parameters

Monitoring target	Parameters assayed in lab
Coke oven wastewater1	pH、conductivity、phenol、ammonia、CN ⁻ 、SCN ⁻ 、COD
Coke oven wastewater2	pH、conductivity、phenol、ammonia、CN ⁻ 、SCN ⁻ 、COD
equalization basin	pH、conductivity、phenol、ammonia、CN ⁻ 、SCN ⁻ 、COD
COD removal basin	pH, conductivity, phenol, ammonia, CN ⁻ , SCN ⁻ , COD, S.S., NO ₂ ⁻ , NO ₃ ⁻
Nitrification basin A	pH, ammonia, CN ⁻ , SCN ⁻ , S.S., COD, NO ₂ ⁻ , NO ₃ ⁻
Nitrification basin B	pH, ammonia, CN ⁻ , SCN ⁻ , S.S., COD, NO ₂ ⁻ , NO ₃ ⁻
Denitrification basin	pH, conductivity, ammonia, CN ⁻ , S.S., COD, NO ₂ ⁻ , NO ₃ ⁻
Effluent	pH、conductivity、ammonia、CN ⁻ 、COD、NO ₂ ⁻ 、NO ₃ ⁻

Monitoring target	Parameters monitored online		
equalization basin	Temperature		
COD removal basin	pH, temperature, pure oxygen flow rate		
Nitrification basin A	temperature, dissolved oxygen, pure oxygen flow rate		
Nitrification basin B	temperature, dissolved oxygen, pure oxygen flow rate		
Denitrification	temperature, dissolved oxygen, pure oxygen flow rate		

63 factors which are assayed daily in lab and 15 factors which are monitored by online detectors were selected

2022 SEAISI

HINASTEEL

2.6 Inventory of all monitoring parameters and controlling strategies

Monitoring parameters

item	monitoring frequency
15 online parameters	continuously
63 parameters which are assayed daily in lab	Mon~Fri
S.S.;VSS	1 times/week

Controlling strategies:

issue	Controlling strategy
CN ⁻ of influent >10mg/L	Add FeSO ₄ into the basins to form Prussian blue Fe ₄ [Fe(CN) ₆] ₃ to remove toxicity
metabolism of biomass decreases	Add nutrient salts and vitamins to stimulate metabolism
decrease of biomass	Implant sludge from other biological WWTP

2022 SEAISI

S.S.: suspended solids; VSS: volatile suspended solids

2.7 model selection and testing

	(1)	(2)	(3-1)	(3-2)
data source	lab	online	lab+online	lab+online
parameters	63	15	63+15	63+15
data amount	1240	1240 1 data set /day	34201 1 data set/hr	1240 1 data set/day
Training R²	0.92	0.89	0.95	0.93
Testing R ²	0.91	0.39	0.95	0.9

- **1.** (3-1)seems better than (1). However it's caused by data processing and the lab data is used too repeatedly \Box overfitting phenomenon.
- 2. SHapley Additive exPlanations analysis showed that the correlation between 15 online parameters and ammonia nitrogen in the effluent is relatively low.
 - (1) was chosen and the model is built using XGBoosting algorism

2.8 Importance of parameters analysis

Ranking	parameter	Importance		
1	NH ₃ -N of Denitrification basin	0.172		
2	NH ₃ -N of COD removal basin	0.155		
3	NH ₃ -N of Nitrification basin A	0.153		
4	NH ₃ ⁻ of Nitrification B basin	0.145		
5	NO ⁻ of Nitrification A basin	0.030		
6	NO ₃ ⁻ of effluent	0.028		
7	SCN ⁻ of COD removal basin	0.024		
8	CN ⁻ of influent	0.019		
9	NO ₂ ⁻ of effluent	0.019		
10	Phenol of COD removal basin	0.016		

The importance of parameters to affect the ammonia concentration in the are ranked using SHapley Additive exPlanations

2.9 Results to Operators

The number of days that the ammonia nitrogen in effluent exceeding the internal control has dropped significantly to **1.3%**

2022 SEAISI

CHINASTEEL

3.1. Process of industrial WWTP

Coagulation, flocculation, and sedimentation are used to remove the suspended solids and turbidity.

CHINASTEEL

3.2 Problems and difficulties

- 1) The sedimentation depends on the size of the flocs. The human eye is used to judge and the chemical adding dosage is base on operator's experience.
- 2) Excess amount of chemicals are usually added in order to ensure water quality of the discharge water. There will be a waste in chemical dosing and sludge handling fee.

Insufficient dosage No flocs formation

Optimal dosage flocs formation

CHINASTEEL

3.3 Development approach

Target: optimize the chemical dosing and reduce the fee to at least 3%

2022 SEAISI

HINASTEEL

3.4 Floc capture and data collection

- Floccam instillation: flocs are captured and the images are 1) converted to 20 quantitative parameters.
- Data Collection: floccam data together with 10 other factors, 2) are all monitored online and the AVEVA PI (Plant Information) System was used to collect and store the data.

Flocs captured by floccam

Floc and background

Image converts to quantitative data

3.5 Data selection and modelling

- **1)** Data source: **20** variables from floccam and other 10 variables, including chemical dosing concentration, pH, and water volume flow rate of influent.
- 2) Target: S.S. of effluent < 30 mg/L

INASTEEL

- **3)** Data gathering frequency is every **5** mins and the HRT is taken into account that the model is set to predict the result in **25** minutes later.
- 4) Testing algorism: random forest, XGBoosting, and deep learning

3.6 Result shown on DCS

- **1) SHapley Additive exPlanations** is used to analyze the importance of each variables
- **2)** The suggested chemical dosing concentration and pH were calculated, exported from PI system, and shown on DCS

3.7 Benefit assessment

- 1. Better quality of Effluent: The average S.S concentration is 5.35 and the maximum is 13, which is lower than the 30 mg/L effluent standard.
- 2. Save dosing fee: the coagulant and the flocculant used per unit of wastewater was decreased by 4.1% and 22.4%, respectively. The total chemical dosing fee was decreased by 4.8% which is meeting the initial 3% target.

	coagulant		flocculant		Total dosing fee		Water quality	
	dosage	Difference %	dosage	Difference %	dosage	Difference %	S.S. average	S.S Max
Before	0.161		0.000399		0.675		16.9	24
After	0.154	-4.1	0.000309	-22.4	0.643	-4.8	5.35	13

2022 SEAIS

NASTEEL

4.1 Summary

Expert system in Biological WWTP

- Model: Lab data and XGBoost were used
- Predict and warning: predict NH₃-N value in effluent
- Optimal operation: pick up the key factors that affect the NH₃-N in the effluent and give suggested value of the key factors.
- □ The number of days that the NH₃-N exceeding the internal control has dropped significantly to 1.3%

Expert system in Industrial WWTP

- Model: 20 Floccam data, 10 online data, and Xgboost were used
- Predict and warning: predict S.S. value in effluent 25 minutes later
- Optimal Operation: give suggested chemical dosing concentration and pH
 The total chemical dosing fee was decreased by 4.8% which is meeting the initial 3% target.

4.2 Future Plan

- **1.** The data of both WWTP will be continuously collected, accumulated and stored in the AVEVA PI System.
- 2. The expert systems of both WWTP would be fixed and modified every 6 months.
- **3.** The research team and operators would have regular communication and discussion to improve both systems.

Thank You

P. 23

