

2022 SEAISI Steel Mega Event & Expo Session 9 - Technology Development

Customized Copper Plate Shape of Steel Continuous Caster for Slab Surface Quality Improvement

<u>Hyoung-Jun Lee</u>, Seong-Yeon Kim, Kyung-Chul Cho, Sang-Hum Kwon POSCO Technical Research Lab., Korea

posco

00. What is Continuous Casting & Mold

***B.G.Thomas, Colorado School of Mines

*EBSD Engineering, 2015, http://www.youtube.com

[Schematics of continuous casting process]

I-01. Background (Corner Cracks)

What is Chamfered Mold?

- Chamfered Mold is a technology that reduces corner cracks by bending slab at temperature

ranges

[Slab corner temp. profile with differenct types

[Higher ductility with chamfered mold]

■ Side Effécteld]

- Chamfered Mold is known to reduce corner cracks, but longitudinal cracks on chamfered

face are issued

I-02. Literature Review

Present Application Status of Chamfered Mold in World Wide

- Many Chinese steelmakers adopt chamfered mold, also release many patents and publications *Top steel-producing companies 2020, The World Steel Association

Ranking	Company	Nationality	Crude Steel Production [million tonnes]	Chamfered Mold Application ('18 Year)
1.	B-Company	CN	115.29	Test
2.	A-Company	Multi	78.46	Test
3.	H-Company	CN	43.76	100%, Batch, Test
4.	S-Company	CN	41.59	Batch
5.	N-Company	JP	41.58	None

[Conference] 'Implemenation of Chamfered Mold Technique at ArcelorMittal Eisenhűttenstadt'

B. Joern, et al., ArcelorMittal Eisenhűttenstadt, Primetals Technologies Austria, ESTAD, 2021

- More than 1,500 heats application, 20–70% coil edge defects redu
- Longitudinal cracks on chamfered face are occurred, but it is control with mold flux

*Model is originally provided by B.G. Thomas, Colorado School of Mines, and developed by author, POSCO

I-04. Simulation Results (Movie) Corner Behavior of Chamfered Mold

ith POSCO

I-04. Simulation Results (Snapshot)

Corner Behavior of Chamfered Mold

- Meniscus

- 100mm below Meniscus

- 200mm below Meniscus

- 300mm below Meniscus

- 400mm below Meniscus

- 600mm below Meniscus

I-05. Customized Chamfered Mold Shape

Multi-Taper Mold Profile Design for Minimizing Air Gap

II-01. Background (Longitudinal **Cracks**)

Why Longitudinal Cracks are Formed Especially in Hypo-Preritectic Steel?

Shrihkage Mold Air Gap Molten Steel Thinner Shell Shrinkage

*M.Wolf, Iron & Steelmaking, 13(1986), pp 248

breakout shell

Hypo-peritectic carbon steel Logitudinal Crack Formation **Mechanisms**

9

II-02. Literature Review

 [Journal] 'Initially Solidified Shell Growth of Hypo-Peritectic Carbon Steel in Continuous

Casting Mold', H. Mizukami, et al. (NSC), ISIJ International, Vol 60 / 2020

- 1968-77
 - Longitudinal cracks form on wide face especially in hypo-peritect
- Temperature distribution on copper plate in width direction must | [Patent] 鋼の連続鋳造用鋳型及び鋼の連続鋳造方法 JFE Steel Corp. therefore additional cooling hole can be effective to reduce cracks JP WO2020-095932 (May, 2020)
 - Different material is irregularly filled in copper plate near meniscus
 - Artificial irregularity makes regular and uniform solidification
- Present Longitudinal Crack Rate in POSCO

Ranking	Carbon Content [wt%]	Additional Alloy	Longitudinal Crack Ratio
1.	0.14	Niobium	90 %
2.	0.15	Niobium, Titanium	70 %
3.	0.10	-	60 %
4.	0.16	Niobium, Titanium	35 %
5.	0.12	-	20 %

An (2002) beat flux 3.0MWm⁻² bole bo

 $\begin{array}{c} \begin{array}{c} \mathbf{P} \\ 22 \\ 21 \\ 21 \\ 23 \\ 23 \\ 22 \\ 23 \\ 22 \\ 23 \\ 22 \\ 23 \\ 22 \\ 23 \\ 23 \\ 22 \\ 23$

II-03. Simulation Domain & Boundary Conditions

- Quarter Model of Casting Mold (Abaqus 2017®)
 - Analytical Model : Coupled Temperature-Displacement Model
 - Mesh Information : C3D4T, T3D2T
 - No. of Mesh: 1,526,770 (Copper Plate), 545,429 (Backup Plate), 69 (Tension Bolt)
 - Analysis Time : 2 hours with POSCO Simulation Server 16 CPUs

II-04. Simulation Results

Temperature Distribution Before/After Customization of Copper Plate

II-05. Customized Uniform Cooling Mold Shape

Modification Items and Details for Uniform Cooling on Wide Face

No.	Items	Details
1.	Copper Plate Customization	Optimization of thickness and water channel for uniform cooling
2.		CFD Analysis of new cooling water channel
3.	Mold Engineering	Foot roll choke location change
4.		Foot roll water spray nozzle length change
5.		Piping set modification between loose side and side frame
6.		Clamping cylinder end length check
7.		Meniscus level sensor location change
8.		Guide plate change
9.		Joint between oscillator and mold frame check
10.		Cooling water plate under side frame change
11.		Width control cyInder location change
12.		Interference check between lower width control cylnder and oscillator
13.		Eccentric shaft change
14.		EMS braket length change
15.		Mold cover slit change

Ш.

Results

Result of Multi-Taper Chamfered Mold of Narrow Face

- More than 1.3 million tonnes of slab were casted by multi-tapered chamfered mold in both

Steel Works

Caster		No. of Heat	Longitudinal Crack Rate	Remark
Pohang	Α	1,500	0 %	Chamfered Multi-Taper Wide
	В	4,200	0 %	Mold Chamfered Mold Face Chamfer Face
Gwangyang	С	3,000	0 %	
	D	1,000	0 %	Face
				[High carbon steel slab surface

[High carbon steel slab surface quality]

Result of Uniform Cooling Mold of Wide Face

- Uniform cooling mold is applied to caster that generates the longitudinal crack the most in Pohang Works

Caster		No. of Heat	Longitudinal Crack Rate	Remark
Pohang	В	8,200	4.1 → 2.4 %	Strand Comparison

Both technologies are no operation instability such as breakout & severe mold level <u>fluxtuations, etc.</u>

IV. Summary & Conclusions

- Multi-Taper Chamfered Mold of Narrow Face for Reducing Corner Cracks
 - Chamfered mold is effective to reduce corner cracks, but longitudinal cracks on chamfered fac
 - According to simulation results, longitudinal cracks on chamfered face is caused by larger she compared to given mold taper especially in mold top corner region
 - Multi-taper mold which can compensates initial shell contraction is possible to utilize stably without any cracks in slab corner
- Uniform Cooling Mold of Wide Face for Reducing Longitudinal Cracks
 - Temperature deviation on copper plate along width direction can initiate longitudinal cracks on especially in hypo-peritectic steel grade
 - Longitudinal cracks on wide face can be reduced more than 40% with customized uniform cod

Thank you for attention

Hyoung-Jun Lee / Ph.D. Steelmaking Research Group Steel Product R&D Center POSCO Technical Research Lab. <u>leehjun@posco.com</u> +82-10-4806-2031

