2022 SEAISI STEEL MEGA EVENT & EXPO

Improvement of Corner Cracks in Slab Continuous Casting for Peritectic Steel by Chamfered Mold Technology

Hsing Yu SUN Engineer, China Steel Corp.

2022 SEAISI

Sliver Defect on Hot Coil

- appearance : tadpole-like, near coil edge 0~20mm.
- Decarbonization & internal oxidation exists at above area of defect.
- Found at Peritectic steel, Nb steel...etc.
- Causing coil quality failure and rejected.

HINASTEEL

Sliver defect revealed by OM

3

Transversal Crack on Slab

- From the features of defect, and observation of runback slabs, the tadpole-like sliver is highly related with transversal crack of slab.
- Causing the slab quality assurance cost become high.

Cause and Effect Diagram of Transversal crack

The Countermeasures Ever Done(1)

Elimination of abnormal mechanical stress

 Enhancement of alignment. esp. mold & 1st seg.
 optimization of mold oscillation. esp. oscillation pattern, hydraulic pressure...etc.

Left 2 Case Direction Measuring of mold oscillation phase

The Countermeasures Ever Done(2)

Lower the heat stress as possible

Using soft cooling casting powder(high basicity).

Unbending at sufficient hot ductility temperature

To increase the temperature when unbending.
 Modifying the 2nd cooling design, ex: spray pattern, specific water capacity...etc.

Sketch of hot ductility at different temperature

The Countermeasures Ever Done(3)

Switching the chemical composition design

Choosing [C] not in 0.09%~0.17% when product design, to prevent peritectic effect, which slab volume shrinkage will be extremely when cooling.
 not easy to realization.

The Next Countermeasure

The Aim of Chamfered Mold

Dispersion stress

To Reducing the stress concentration effect via chamfering slab.

Unbending at sufficient hot ductility temperature

To increase the temperature when unbending.

Sketch of chamfered mold

Comparison of Countermeasures

Iong-term effect, worthy to take effort for.

	Chamfered mold	Alignment	2 nd cooling	Casting powder	Chemical composition	Mold control
Effect	****	****	***	*	****	**
Effective period	****	*	**	****	****	***
Controll- ability	**	*	**	***	\bigtriangleup	**
Effort to control	••••	•••	••	•	\bigtriangleup	•••

more; better
more; need more effort

 \triangle not easy to realization

Introduction of Target Caster

Photo of #5SCC caster and chamfered mold

#5SCC Caster and chamfered mold

- Type: Vertical-Bending
- Dimension: 250 mm*(950~1575) mm
- Metallurgical Length: 37.2 m
- Casting Speed: 1.0~1.4m/min
- Products: low carbon & peritectic steel for hot rolling, tin plate...etc.
- Chamfered mold design target: transversal crack
- Mold figures: multi-phase, and modified foot-roller, large chamfered face

Result Discussion(1)

Slab corner temperature and transversal crack

- Temperature increased ~60 °C.
- Transversal crack rate was reduced by 33%.

Result Discussion(2)

Corner problem and improvement effort

Corner problem	Cause	Improvement		
Slab corner squeezed	Misalignment of mold & foot-roller	 Enhancing Skill training modify alignment tool 		
Corner longitudinal crack and bleeding	 Mold angle deformed Mold coating peel off Mold seam stock with slag 	 Adjust producing plan to reducing mold-change Modifying coating material(Ni- to Ni-Co-) Enhancing cleaning procedure and skill 		

Photo of slab corner defect and associated mold problem

Result and Discussion(3)

Bleeding on Narrow Face

- parallel to oscillation mark, leaking out and quick repaired.
- without breaking out, messy sticking casting powder, and sticking point.
- Considering the support would be insufficient at upper mold area.
 - Improved by increasing taper ratio~0.01%.

Photo of bleeding on chamfered slab

Result and Discussion (4)

Quality of Hot Coil

- Coil sliver rate was 57% lower.
- Tin plate coil rejected rate decreased 78%.
- Saving slab reconditioning cost, and going hot-charge.

Conclusion

- The application of chamfered mold lowered down slab transvercal crack rate by 33%, hot rolled coil defect rate by 57%. Which saved the cost of recondition of slab gratefully.
- Through adjusting producing plan, changing coating material, enhancing slag cleaning process, repairing and alignment art, slab corner problem was controlled.
- Via increasing taper ratio, bleeding on slab narrow side was solved.

Reference

- 1. YEN-HAO SU, CHENG-HUA YUAN, JEN-WANG CHU, PING-YUAN, 2011, "Prediction of the Transverse cracking tendency of the continuously-cast HSLA steel slabs", SEAISI Quality Journal, Vol.40, pp33-37.
- 2. Barrie Mintz, 1999, "The Influence of Composition on the Hot Ductility of Steels and to the Problem of Transverse Cracking", ISIJ International, Vol. 39, No.9, pp. 833-855.
- 3. B. Patrick, S.G. Thornton, 1990, "Effect of Mould and Top Zone Corner Cooling on Transverse and Longitudinal Corner Cracking in Slabs and Blooms", Technical steel research, EUR 12961 EN, Contract No. 7210-CA/821, Commission of the European Communities, ISBN 92-826-1683-5, A1159
- 4. WANG Wen-jun, LI Ben-hai ZHU Zhi-yuan, LIU yang, WANG yu-long, GUAN Chun-yang, 2012, "Development and Application of Mould With Chamfered Corners for Continuous Casting of Slabs", Journal of Iron and Steel Research, Vol.24, pp.21-26.
- 5. YU Xue-cheng, LIU Feng-gang, MAWei, NI You-jin, ZHU Jian-qiang, LIU Guo-liang, 2018, "Development and application of chamfer mould in Shougang Qian'an Steel", Continuous Casting, Vol.43, no.5, pp.75-80.
- 6. Lei Song, Zeng Shan, Zhang Daojie, Yan Jianwu, Shen Houfa, 2013, "Chamfer and Taper Researches of Mould in Slab Continuous Casting", Metallurgical equipment, Vol.207,pp.5-12.
- 7. Improvement of the Periodical Mold Level Fluctuation in a Slab Caster and Relevant Sliver Defects on Hot-Rolled Coils , Kuo-Wei Huang, AIST 2010
- 8. The Improvement of Transverse Crack on Slab for Plate Products, Hsing-Yu SUN, AIST 2014

