Manufacturing Technology of High Strength, High Toughness Offshore Wind Power Structural Steel Plates

WAN-LIN HSIEH¹, JU-CHIN TANG², PO-CHIH LIU¹ Engineer, ¹Metallurgical Department, China Steel Corp. ²Sing Da Marine Structure Corp., Kaohsiung, Taiwan

Outline

- Introduction
- Quality Criterion of Offshore Steel
- Manufacturing Technology
- Conclusion

Offshore Steel Structure in Taiwan

✓Wind power generators

- >Rising of the sea level (to go offshore)
- Taiwan government has planned to establish 600 wind power generators in Taiwan strait, in order to follow the global trend of energy and ecology protection strategy.

Steel structure has been widely used in offshore industry.

2022 SEAISI

Demands of Offshore Steel

Bigger

Enlarging

Design

Harsh

Environment

Faster

Installation

HINASTEEL

- Lighter
- Less Cost
- <High Strength>
- Endurance of Wind, Wave, and Seismic Strikes
- Low Temperature
- Limited Maintenance Capability
- <Excellent Impact Resistance>
- Shorter Project Lead Times
- Less Repairment after Welding
- <Better Weldability, Anti-Lamellar>

2025 Target: 5.5GW (≒668 wind turbines)

Chemical Composition

Ultra-low [P], [S]

- Avoid deleterious inclusions
- Avoid center segregation

Addition of Microalloys

HINASTEEL

Recrystallization Stop Temperature: Nb >Ti >Al >V
Grain Refinement -> Strength & Toughness

Tnr = 887 + 464 C + (6445 Nb - 644 Nb^{1/2}) + 890 Ti + 363 Al +(732V - 230 V^{1/2}) - 357 Si

Chemical Composition(cont.)

Low Carbon Content

- ► Less M/A \rightarrow Less brittle texture
- The impact toughness was increased approximately by <u>30J</u> in average.

Content	Tensile Test			ZRA	Temp -40°C Charpy Impact Energy (J)	
	TS (MPa)	YS (MPa)	EL (%)	(%)	Longitudinal	Transverse
Original	499	394	28	66	264	252
Low Carbon	495	387	31	71	299	285

Rolling Process- Increase Holding Thickness

2022 SEAISI

HINASTEEL

Increase Holding Thickness (cont.)

✓ Remarkable Improvement of Impact Resistance

✓ No Extra Cost

Cooling Technique

✓ Extended Accelerated Cooling (EACC)

CHINASTEEL

2022 SEAISI

Cooling Technique- EACC (cont.)

Temperature profile in following cooling process:

Overcooling near head and edge portion were greatly resolved by EACC cooling system.

CHINASTEEL

2022 SEAISI

Conclusion

- ✓ After the implementations including <u>control of [P], [S]</u>, <u>addition of microalloys</u>, <u>reduction of carbon content</u>, and production by <u>increasing holding thickness</u>, and <u>EACC</u> cooling system, the defect rate dropped from 83% to 0%.
- Offshore steel with stable quality and better performance has been developed.
- ✓ In 2021 July, Taiwan's first indigenous underwater foundation is built.

Thanks for your attention!

