Advanced control solutions for rolling mill Reheating Furnaces - a case history -
1. AIC Automazioni Industriali Capitanio
2. Reheating furnace E&A
3. Case history
4. Results
5. APC
6. Conclusions
AIC Automazioni Industriali Capitanio srl
- Odolo (BS) Italy - 1975
- Torbole Casaglia (BS) Italy - 2007

AIC Capitanio Automation Systems India Pt.Ltd. - 2008

AIC North America Corp. - 2011

AIC South America Brazil - 2016
50+ employees
2500m² panel shop with 4 cranes 15/25ton
2017 turnover 15M$
950+ applications
160+ customers
40+ countries, 4 continents
System integrator for steel Industry specialized for LP
Our International Customers

- Feng Hsin Steel
- TSC
- Capitol Steel
- Outokumpu
- Nucor
- Sandvik
- Gerdau
- Acciaierie Venete SPA
- ArcelorMittal
- Ork Martin
AIC can suggest the most suitable solutions for all customer automation needs.
Today Electrical & automation are key factors for RHF:
- Efficiency (consumption & costs)
- Environmental issues
- Process control (temperature homogeneity)
- Yield
- Safety
- Data handling (Level 2, mathematical models, Industry 4.0)
Billets Reheating Furnace
- USA plant
- 5 zones pusher type
- Rated 110 Tph
- Structural mill

Issues:
- Old Automax PLC
- Obsolete HMI
- Material tracking issues
- External HW controllers
- Temperature homogeneity
- No data recording
Project scope of supply for the revamping E&A project:
- Combustion control upgrade
- Handling control upgrade
- Level 2 system
- CCTV system
Project targets

Targets:

- Replacing all obsolete automation components
- Landfill gas control
- All RHF control loops handled by PLC
- New HMI system integrated with Rolling mill HMI
- New Level 2 system that includes:
 - Reheating and delay strategies
 - Heating and cooling ramps
 - Material tracking
 - Feedback of billet exit temperature
- Improve efficiency of the system
- Improve safety of the area
Case history upgrade

- New PLC and RIO to control all the loops at the RHF:
 - Zone’s temperature PID control
 - Air/Gas DCL control
 - Flow control
 - Cutoff strategies
 - RHF internal pressure
 - Combustion air pressure
- Furnace light-up procedure by using new BCU
- Safety circuit implemented into PLC to control Main Gas
- Material tracking by reading EOH billet on loading table
- Interface with MES system
- Documentation to get approval from local agency
RHF Combustion control system

- Level 1 functions:
RHF Combustion control system
EOH Reading at RHF entry side
RHF Table based Level 2

![RHF Table based Level 2](image)

LEVEL 2: TRACKING

<table>
<thead>
<tr>
<th>POS</th>
<th>ZONE</th>
<th>DELAY</th>
<th>DEEP No</th>
<th>MILL ORDER</th>
<th>PRODUCT CODE</th>
<th>PRODUCT ID</th>
<th>HEAT NO</th>
<th>TOTAL</th>
<th>S.arr Number</th>
<th>S.arr Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PREHEAT</td>
<td>5207594502</td>
<td>AGG0020</td>
<td>A2 X 1-1/2 X 3/16</td>
<td>6</td>
<td>113</td>
<td>52</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>PREHEAT</td>
<td>5207594502</td>
<td>AGG0020</td>
<td>A2 X 1-1/2 X 3/16</td>
<td>6</td>
<td>113</td>
<td>51</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>PREHEAT</td>
<td>5207594502</td>
<td>AGG0020</td>
<td>A2 X 1-1/2 X 3/16</td>
<td>6</td>
<td>113</td>
<td>50</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>PREHEAT</td>
<td>5207594502</td>
<td>AGG0020</td>
<td>A2 X 1-1/2 X 3/16</td>
<td>6</td>
<td>113</td>
<td>49</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>PREHEAT</td>
<td>5207594502</td>
<td>AGG0020</td>
<td>A2 X 1-1/2 X 3/16</td>
<td>6</td>
<td>113</td>
<td>48</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>PREHEAT</td>
<td>5207594502</td>
<td>AGG0020</td>
<td>A2 X 1-1/2 X 3/16</td>
<td>6</td>
<td>113</td>
<td>47</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>PREHEAT</td>
<td>5207594502</td>
<td>AGG0020</td>
<td>A2 X 1-1/2 X 3/16</td>
<td>6</td>
<td>113</td>
<td>46</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>PREHEAT</td>
<td>5207594502</td>
<td>AGG0020</td>
<td>A2 X 1-1/2 X 3/16</td>
<td>6</td>
<td>113</td>
<td>45</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>PREHEAT</td>
<td>5207594502</td>
<td>AGG0020</td>
<td>A2 X 1-1/2 X 3/16</td>
<td>6</td>
<td>113</td>
<td>44</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>PREHEAT</td>
<td>5207594502</td>
<td>AGG0020</td>
<td>A2 X 1-1/2 X 3/16</td>
<td>6</td>
<td>113</td>
<td>43</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>PREHEAT</td>
<td>5207594502</td>
<td>AGG0020</td>
<td>A2 X 1-1/2 X 3/16</td>
<td>6</td>
<td>113</td>
<td>42</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>PREHEAT</td>
<td>5207594502</td>
<td>AGG0020</td>
<td>A2 X 1-1/2 X 3/16</td>
<td>6</td>
<td>113</td>
<td>41</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>PREHEAT</td>
<td>5207594502</td>
<td>AGG0020</td>
<td>A2 X 1-1/2 X 3/16</td>
<td>6</td>
<td>113</td>
<td>40</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>PREHEAT</td>
<td>5207594502</td>
<td>AGG0020</td>
<td>A2 X 1-1/2 X 3/16</td>
<td>6</td>
<td>113</td>
<td>39</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>PREHEAT</td>
<td>5207594502</td>
<td>AGG0020</td>
<td>A2 X 1-1/2 X 3/16</td>
<td>6</td>
<td>113</td>
<td>38</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>PREHEAT</td>
<td>5207594502</td>
<td>AGG0020</td>
<td>A2 X 1-1/2 X 3/16</td>
<td>6</td>
<td>113</td>
<td>37</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>PREHEAT</td>
<td>5207594502</td>
<td>AGG0020</td>
<td>A2 X 1-1/2 X 3/16</td>
<td>6</td>
<td>113</td>
<td>36</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>PREHEAT</td>
<td>5207594502</td>
<td>AGG0020</td>
<td>A2 X 1-1/2 X 3/16</td>
<td>6</td>
<td>113</td>
<td>35</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>PREHEAT</td>
<td>5207594502</td>
<td>AGG0020</td>
<td>A2 X 1-1/2 X 3/16</td>
<td>6</td>
<td>113</td>
<td>34</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>PREHEAT</td>
<td>5207594502</td>
<td>AGG0020</td>
<td>A2 X 1-1/2 X 3/16</td>
<td>6</td>
<td>113</td>
<td>33</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>PREHEAT</td>
<td>5207594502</td>
<td>AGG0020</td>
<td>A2 X 1-1/2 X 3/16</td>
<td>6</td>
<td>113</td>
<td>32</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>PREHEAT</td>
<td>5207594502</td>
<td>AGG0020</td>
<td>A2 X 1-1/2 X 3/16</td>
<td>6</td>
<td>113</td>
<td>31</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>PREHEAT</td>
<td>5207594502</td>
<td>AGG0020</td>
<td>A2 X 1-1/2 X 3/16</td>
<td>6</td>
<td>113</td>
<td>30</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>PREHEAT</td>
<td>5207594502</td>
<td>AGG0020</td>
<td>A2 X 1-1/2 X 3/16</td>
<td>6</td>
<td>113</td>
<td>29</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>PREHEAT</td>
<td>5207594502</td>
<td>AGG0020</td>
<td>A2 X 1-1/2 X 3/16</td>
<td>6</td>
<td>113</td>
<td>28</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>PREHEAT</td>
<td>5207594502</td>
<td>AGG0020</td>
<td>A2 X 1-1/2 X 3/16</td>
<td>6</td>
<td>113</td>
<td>27</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>PREHEAT</td>
<td>5207594502</td>
<td>AGG0020</td>
<td>A2 X 1-1/2 X 3/16</td>
<td>6</td>
<td>113</td>
<td>26</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>HEAT</td>
<td>5207594502</td>
<td>AGG0020</td>
<td>A2 X 1-1/2 X 3/16</td>
<td>6</td>
<td>113</td>
<td>25</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>HEAT</td>
<td>5207594502</td>
<td>AGG0020</td>
<td>A2 X 1-1/2 X 3/16</td>
<td>6</td>
<td>113</td>
<td>24</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>HEAT</td>
<td>5207594502</td>
<td>AGG0020</td>
<td>A2 X 1-1/2 X 3/16</td>
<td>6</td>
<td>113</td>
<td>23</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>
Target for the system:

- Minimize necessary surface temperature of the billets, stabilizing final product quality and minimizing fuel specific consumption
- Optimize heating thermal profile
- Standardize furnace operations
- Guarantee coordination between RHF and rolling mill, with handling of scheduled and non-scheduled downtime
- Eliminate operators wrong behaviors in conducting the furnace
- Table based Level 2 system adjusts zones setpoints accordingly to billet tracking inside the furnace.
- It’s considering factors such as:
 - Rate pace
 - Loading billet temperature
 - Heat characteristics arriving from Recipe system
RHF Table based Level 2

RHF - LEVEL 2

Heat Curve # 1

<table>
<thead>
<tr>
<th>Rate</th>
<th>NORTH SOAK</th>
<th>CENTER SOAK</th>
<th>SOUTH SOAK</th>
<th>HEAT ZONE</th>
<th>PREHEAT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2240</td>
<td>2220</td>
<td>2200</td>
<td>1730</td>
<td>1500</td>
</tr>
<tr>
<td>24</td>
<td>2250</td>
<td>2230</td>
<td>2210</td>
<td>1830</td>
<td>1580</td>
</tr>
<tr>
<td>30</td>
<td>2260</td>
<td>2240</td>
<td>2220</td>
<td>1900</td>
<td>1690</td>
</tr>
<tr>
<td>36</td>
<td>2270</td>
<td>2250</td>
<td>2230</td>
<td>1980</td>
<td>1790</td>
</tr>
<tr>
<td>42</td>
<td>2280</td>
<td>2260</td>
<td>2240</td>
<td>2050</td>
<td>1930</td>
</tr>
<tr>
<td>48</td>
<td>2290</td>
<td>2270</td>
<td>2250</td>
<td>2120</td>
<td>2020</td>
</tr>
<tr>
<td>54</td>
<td>2300</td>
<td>2280</td>
<td>2260</td>
<td>2160</td>
<td>2070</td>
</tr>
<tr>
<td>60</td>
<td>2310</td>
<td>2290</td>
<td>2270</td>
<td>2190</td>
<td>2100</td>
</tr>
<tr>
<td>66</td>
<td>2320</td>
<td>2300</td>
<td>2280</td>
<td>2210</td>
<td>2130</td>
</tr>
<tr>
<td>72</td>
<td>2330</td>
<td>2310</td>
<td>2290</td>
<td>2220</td>
<td>2160</td>
</tr>
</tbody>
</table>

Descent Ramp (°F/H) | Delay Setpoint (°F) | Ascent Ramp (°F/H) | Turn Back Setpoint (°F) |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Preheat 999</td>
<td>1510</td>
<td>500</td>
<td>1500</td>
</tr>
<tr>
<td>Heat 999</td>
<td>1630</td>
<td>700</td>
<td>1730</td>
</tr>
<tr>
<td>North 450</td>
<td>2170</td>
<td>600</td>
<td>2270</td>
</tr>
<tr>
<td>Center 450</td>
<td>2150</td>
<td>600</td>
<td>2250</td>
</tr>
<tr>
<td>South 450</td>
<td>2130</td>
<td>600</td>
<td>2230</td>
</tr>
</tbody>
</table>

Copy Heat Curve Number 1 in Heat Curve 1 COPY

Products Assignment Heat Curve List

Hot Charge Temperature

Temp [°F]
Rate [N]
North Soak
Center Soak
South Soak
Heat Zone
Preheat
RHF Table based Level 2
RHF - LEVEL 2

Tracking | QUAD | Heat Curve | Reports | Diagnostic

<table>
<thead>
<tr>
<th>Heat Number</th>
<th>Product Code</th>
<th>Product ID</th>
<th>Mill Order</th>
<th>Billet Size</th>
<th>Billet Loaded</th>
<th>Billet Unloaded</th>
<th>Billet Total</th>
<th>Weight</th>
<th>First Billet</th>
<th>Last Billet</th>
<th>FRP ID</th>
<th>Nature GAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>52075942</td>
<td>A53AF0480</td>
<td>A1.75 X 1.75 X 155</td>
<td>52075942006</td>
<td>130 X 130MM</td>
<td>48</td>
<td>48</td>
<td>48</td>
<td>2594</td>
<td>10/21/2016 08:17:14 AM</td>
<td>10/21/2016 01:43:31 PM</td>
<td>120565</td>
<td>0</td>
</tr>
<tr>
<td>52075943</td>
<td>A58AF0600</td>
<td>A1.75 X 1.75 X 143</td>
<td>52075943004</td>
<td>130 X 130MM</td>
<td>17</td>
<td>17</td>
<td>17</td>
<td>2580</td>
<td>10/21/2016 03:17:46 PM</td>
<td>10/21/2016 07:22:08 PM</td>
<td>120566</td>
<td>0.01</td>
</tr>
<tr>
<td>52075944</td>
<td>A58AF0480</td>
<td>A1.75 X 1.75 X 143</td>
<td>5207594305</td>
<td>130 X 130MM</td>
<td>55</td>
<td>55</td>
<td>55</td>
<td>2602</td>
<td>10/21/2016 04:45:57 PM</td>
<td>10/21/2016 11:00:00 PM</td>
<td>120568</td>
<td>0</td>
</tr>
<tr>
<td>52075944</td>
<td>A50GG0240</td>
<td>A1.75 X 1.75 X 1/8</td>
<td>5207594306</td>
<td>130 X 130MM</td>
<td>42</td>
<td>42</td>
<td>42</td>
<td>2498</td>
<td>10/21/2016 07:01:44 PM</td>
<td>10/22/2016 12:05:14 AM</td>
<td>120569</td>
<td>0</td>
</tr>
<tr>
<td>52075944</td>
<td>A50GG0480</td>
<td>A1.75 X 1.75 X 1/8</td>
<td>5207594403</td>
<td>130 X 130MM</td>
<td>36</td>
<td>36</td>
<td>36</td>
<td>2498</td>
<td>10/21/2016 08:15:10 PM</td>
<td>10/22/2016 01:30:13 AM</td>
<td>120570</td>
<td>0</td>
</tr>
<tr>
<td>52075968</td>
<td>A53E 0720</td>
<td>A1.75 X 1.75 X 155</td>
<td>5207596003</td>
<td>130 X 130MM</td>
<td>40</td>
<td>40</td>
<td>40</td>
<td>2572</td>
<td>10/21/2016 02:30:41 PM</td>
<td>10/21/2016 05:39:48 PM</td>
<td>120614</td>
<td>0.02</td>
</tr>
<tr>
<td>52075966</td>
<td>A50E 0720</td>
<td>A1.75 X 1.75 X 1/8</td>
<td>5207596004</td>
<td>130 X 130MM</td>
<td>40</td>
<td>40</td>
<td>40</td>
<td>2572</td>
<td>10/21/2016 09:31:18 PM</td>
<td>10/22/2016 02:30:58 PM</td>
<td>120615</td>
<td>0.23</td>
</tr>
<tr>
<td>52075967</td>
<td>A50E 0720</td>
<td>A1.75 X 1.75 X 1/8</td>
<td>5207596704</td>
<td>130 X 130MM</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>2572</td>
<td>10/21/2016 11:33:45 PM</td>
<td>10/22/2016 04:37:11 AM</td>
<td>120616</td>
<td>0.3</td>
</tr>
<tr>
<td>52075968</td>
<td>A55E 0720</td>
<td>A1.75 X 1.75 X 1/8</td>
<td>5207596802</td>
<td>130 X 130MM</td>
<td>83</td>
<td>83</td>
<td>83</td>
<td>2608</td>
<td>10/21/2016 06:41:16 PM</td>
<td>10/21/2016 11:16:02 PM</td>
<td>120610</td>
<td>0</td>
</tr>
<tr>
<td>52075968</td>
<td>A53E 0720</td>
<td>A1.75 X 1.75 X 155</td>
<td>5207596803</td>
<td>130 X 130MM</td>
<td>21</td>
<td>21</td>
<td>21</td>
<td>2608</td>
<td>10/21/2016 09:12:29 AM</td>
<td>10/22/2016 02:36:14 PM</td>
<td>120611</td>
<td>0</td>
</tr>
<tr>
<td>52075968</td>
<td>A53E 0720</td>
<td>A1.75 X 1.75 X 155</td>
<td>5207596904</td>
<td>130 X 130MM</td>
<td>75</td>
<td>75</td>
<td>75</td>
<td>2608</td>
<td>10/21/2016 10:13:03 AM</td>
<td>10/21/2016 04:23:45 PM</td>
<td>120612</td>
<td>0.02</td>
</tr>
</tbody>
</table>

BY HEAT

FROM 10/21/2016 10:32:49 AM
TO 10/22/2016 10:32:49 AM
Select Heat

Export table in .CSV

Weeks to Backup: 3

Weekly Backup Export
Delay strategies

LEVEL II CALCULATIONS

<table>
<thead>
<tr>
<th>Setpoints</th>
<th>L2</th>
<th>DESC Ramp</th>
<th>Delay</th>
<th>ASC Ramp</th>
<th>Turnback</th>
</tr>
</thead>
<tbody>
<tr>
<td>PREHEAT</td>
<td>1310 °F</td>
<td>999</td>
<td>1510 °F</td>
<td>500</td>
<td>1501 °F</td>
</tr>
<tr>
<td>HEAT ZONE</td>
<td>1450 °F</td>
<td>999</td>
<td>1630 °F</td>
<td>700</td>
<td>1729 °F</td>
</tr>
<tr>
<td>SOUTH SOAK</td>
<td>2190 °F</td>
<td>450</td>
<td>2131 °F</td>
<td>600</td>
<td>2230 °F</td>
</tr>
<tr>
<td>CENTER SOAK</td>
<td>2210 °F</td>
<td>450</td>
<td>2151 °F</td>
<td>600</td>
<td>2250 °F</td>
</tr>
<tr>
<td>NORTH SOAK</td>
<td>2230 °F</td>
<td>450</td>
<td>2170 °F</td>
<td>600</td>
<td>2269 °F</td>
</tr>
</tbody>
</table>

DELAY STRATEGIES

Manual Delay
START | FINISH

Automatic Delay
Trig. Time: 300 sec
DISABLE
START | FINISH

CANCEL DELAYS
Countdown Trigger
300 sec

Unscheduled Delay
Duration: 30 min
DISABLE
START | FINISH

Scheduled Delay
Duration: 60 min
DISABLE
START | FINISH

Downday Delay
23 49 10 23 2016
ENABLE | START
DISABLE | FINISH

Countdown Duration Delay
2214 min

Ready at Timing

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>HEAT ZONE</td>
<td>Sat Oct 22 11:02:43 2016</td>
</tr>
<tr>
<td>SOUTH SOAK</td>
<td>Sat Oct 22 11:26:34 2016</td>
</tr>
<tr>
<td>CENTER SOAK</td>
<td>Sat Oct 22 11:27:19 2016</td>
</tr>
</tbody>
</table>
Delay strategies

- **Manual delay:**
 - Started by operator, temperatures decrease according to decrease set rate
 - Stopped by operator, temperatures increase according to increase set rate

- **Automatic delay:**
 - Calling billet timer is later than scheduled trigger time, when activated temperatures decrease and the delay is deactivated when a billet is pushed again at furnace exit
Delay strategies

- **Unscheduled delay:**
 - Started by operator, temperatures decrease according to decrease set rate
 - Stopped when set day/time is reached

- **Scheduled delay:**
 - A flag on billet tracking detects the last billet to push out of the furnace and when stop production
 - As soon the flagged billet exits a single heating zone, the temperature of that single zone starts to decrease according to decrease set rate
 - Remains active until a new billet is pushed out of the furnace
Delay strategies

- **Downday delay:**
 - Start at set date/time and stops at day/time specified
Delay strategies

![Delay Logs]

- From: 10/21/2016 10:33:24 AM
- To: 10/22/2016 10:33:24 AM
- Refresh By Date and Time
- Finished Heat at: PM 10/21/2016 07:48:33 PM

Filters:
- Description

Delay Types Filter:
- Manual
- Auto
- Unscheduled
- Scheduled
- Down Day

Running/Finished:
- RUNNING AND FINISHED
Results

- **CONSUMPTIONS** – fuel consumptions was reduced by 5% on average
- **QUALITY** – Temperature variability was reduced by 40%
- **EFFICIENCY** – Operators errors are minimized due to reduced intervention on the combusting process (-70%)
- **ENVIRONMENT** – Better combustion control lead to less emissions in the atmosphere
- **YIELD** – Scale reduction (avg 1,2%)
Adaptive & Predictive model

- Predictive mathematical model

- Taking in considerations parameters like costs, technical constraints, targets and tuning parameters
Adaptive & Predictive model

- Predictive control algorithm is an Advanced Process Control technique that:
 - using an **explicit dynamic model** of the plant (model matrix for multiple input/multiple output systems)
 - **predicts** possible effects that **future changes on manipulated variables** could have on the outputs
 - taking account of specific cost functions, **it calculates** control signals that **minimize plant specific consumption**

- The controller aim is to lead the plant to the **most suitable working point**, respecting all the variables constraints.
Adaptive & Predictive model

- Move closer to process constraints = increase profit

Predictive model

Optimum point

- Optimum direction chosen according to economic variables

- Feasible working region

- Operators favorite region

- Iso-profit line
Adaptive & Predictive model

- Increase efficiency

Between 3% and 6% fuel savings on recent applications
State of the art Combustion control system can:

- Reduce fuel consumption
- Improve yield
- Improve quality of final product
- Educate operators to better run the plant
- Reduce emissions in atmosphere
- Give statistics data and analysis on final products
Thank you!

Marco Capitanio

marco.capitanio@aicnet.it

www.aicnet.it